
Port-a-kit
p-System

Knowledge Software Ltd
Farnborough, Hants, England

Chapter 1

Introduction

The basic aim is to implement a p-System Port-a-kit. This kit provides all of the tools
needed to port the p-System to a new host processor (provided a reasonable ‘C’ compiler is
available).

This portability has been achieved by writing a P-code interpreter in ‘C’. Also provided is a
bios, written in ‘C’, containing all the hooks needed to get the p-System up and running on a
new host processor.

The p-System Port-a-kit will run existing software unchanged, provided that it does not use
assembly language.

The Port-a-kit is aimed at mini and mainframe computers. It is expected that users will
require multi-user facilities. It is assumed that the host operating systems will be
commercially oriented.

1.1 This document

This document is a guide for bringing the Port-a-kit up on a new processor or operating
system.

1.2 Other documents

Port-a-kit source code. This is heavily commented and obviously provides the detailed
documentation.

Internal Architecture Reference Manual (IARM). The definitive guide to P-code
definitions. Also provides a definition of the basic functions of the bios.

Adaptable p-System guide.

Stride 400 series owners manual Vol 1 & 2. A good source for ideas on how to extend the
standard p-System.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 1

Chapter 2

The distribution disc

2.1 P-code interpreter

• P-code interpreter in ‘C’. All features found in a standard IV.2.1 interpreter plus the
extensions documented here.

• Bios in ‘C’ with well defined hooks to allow rapid porting to new hosts.

• LONGOPS unit in ‘C’

2.2 Support Tools

a) PDIR. Manipulate p-System directory from host OS. Export/Import files, create
p-System volumes, etc.

b) Symbolic debugger. See page 11

c) MC. A utility to deduce the runtime properties of C compilers.

2.3 Directory listing

Volume in drive C has no label
Directory of C:\PORTKIT

MC C 10996 2-13-89 9:46a
PDIR C 12963 1-05-89 10:20a
PMEDEF H 18971 2-20-89 3:20p
PMEOPS H 9725 12-14-88 4:06p
PMEMAC H 7741 12-14-88 4:06p
PMEVAR H 7107 2-14-89 11:42a
PMEDBG C 23084 2-14-89 12:00p
PMEFEC C 15120 12-14-88 3:56p
PMEIO C 22012 1-04-89 5:35p
PMEMCD H 951 2-20-89 11:40a
PMERW C 24180 2-14-89 2:50p
PMESTD C 14713 12-14-88 3:53p
PMENAT C 6468 12-14-88 3:54p
PCODE DAT 2824 3-26-87 2:33p
PMEMC H 14752 2-20-89 11:41a
ERRNO H 326 12-14-88 4:08p
PMECAL C 10631 12-14-88 3:49p
MCH <DIR> 9-24-88 5:58p
PMELNG C 21486 12-14-88 3:51p

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 2

The distribution disc
Directory listing

PMELUT C 8396 12-14-88 3:51p
PMETSK C 5597 12-14-88 3:52p
PMECOD C 19739 12-14-88 3:52p
PSCVT C 2340 1-04-89 5:36p
PMEUTL C 22860 2-20-89 10:55a
PSYS C 19813 2-14-89 11:42a
AMOSMCD H 980 12-14-88 4:06p
TERMST C 281 12-14-88 3:49p
PSAMOS C 2578 12-14-88 3:56p
PSEMA C 18672 1-05-89 4:55p
PSUTIL C 6710 2-20-89 1:21p
PSEMA H 873 2-14-89 10:18a

31 File(s) 708608 bytes free

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 3

Chapter 3

Bringing up the Port-a-kit

Before attempting to install the Port-a-kit it is recommended that you obtain copies of the
appropriate ‘C’ language users guide and ‘C’ runtime library reference manual.

3.1 MC

This is a utility that deduces the runtime implementation dependent features of your ‘C’
compiler. When executed MC produces a file containing macros specific to a given C
compiler on a particular host cpu.

MC generates a file called PMEMCDF.H which is #included into PMEMC.H and contains
the following fields:

• Host - name of host system as supplied to MC

• HostSex - 0 or 1 (byte index of msb in WORD)

• WORD - 16 bit signed type

• UWORD - 16 bit unsigned type

• LSx() - logical left shift macros

• RSx() - logical right shift macros

• BYTE - 8 bit type

• UBW() - convert BYTE to UWORD

• SBW() - convert BYTE to WORD

• no_real/RealSize/REAL - define characteristics of floating-point type to be used

• StreamIO - select file I/O method. See page 28

The following are a list of non-runtime specific #defines . These are all in PMEMC.H:

• has_ioctl, has_signal, has_profile - these control the inclusion of certain system header
files and the code associated with them. See page 26 for details of what these mean in
Unix-like environments.

• M_PROC - taken from the field in KERNEL, this should indicate the host processor
type if machine code is to be supported. See page 29 for more details.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 4

Bringing up the Port-a-kit
MC

• NAT68000 - example of support for native code on 68000 based hosts.

• REG1-9 - register variables in order of priority. Define as many to register as your
compiler allows, define the rest as white space. See page 12 for further discussion.

• void - define this as int if the host compiler does not have the void type.

• HostFNameLen - length of maximum host file name. A reasonable value is 128.

• DefaultSysDisk - host file name to use when no boot volume is given. e.g.,
"psystem.vol"

• baby_compiler - define this if the P-code fetch loop in PMEFEC.C is too large for the
compiler to handle. This selects whether the file PMECAL.C is #included into
PMEFEC.C or is treated as a separately compiled file. Also certain macros become
function calls to reduce code size.

• PTReq(), PTRlt() - pointer comparisons

PTRsub() - difference between two pointers. The result should be a WORD which is
usually interpreted as an unsigned displacement, however there are a few places where
this result is treated as signed.

PTRdisp() - add an unsigned displacement to a pointer. e.g., PTRdisp(p,-2) must be
equal to p+0xfffeL.

• GETCH - read a character from the keyboard without echoing it.

PUTCH() - write a character to the terminal.

CharWaiting - should return FALSE if no characters are waiting to be read from the
keyboard, TRUE if one or more characters are waiting.

CBufSize - size of internal type-ahead buffer.

CEOFChar - if GETCH can return -1 on any input character, this defines what
p-System sees.

IsEOF - code to test for end-of-file condition on keyboard after error on GETCH.
Define this as FALSE if not applicable.

ReadString - usually just gets, this macro is used by PMEDBG to read from the
console (with echo). On hosts that use ioctl something more elaborate needs to be done
to save and restore the state of the terminal across gets.

See page 7 for more details of these macros and how they affect the function of the
Bios.

• BlockOffset() - convert a p-System block number into an offset for fseek/lseek. The
result must be a correct long value.

• Various macros under StreamIO - check that these definitions correspond to the host’s
way of doing file I/O.

• LowClock/HighClock - return the low and high WORDs of a 32-bit, 60Hz system
clock. If the host does not support a clock, return 0. It may be necessary to convert the

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 5

Bringing up the Port-a-kit
MC

host clock to 60Hz to simulate this.

• GetPDate - return a 16 bit value representing the date as follows:
RSn(year 0..99, 9) | RS4(day of month 1..31) | month 1..12
If the date is not available, return a suitable base date such as 1st Jan 1980 i.e.,
0xA011.

3.2 Interpreter

To bring up the interpreter compile the following:

• Main interpreter files:

PME.C - main, bootstrap

PMEFEC.C - fetch-execute loop

PMECOD.C - complex P-codes

PMESTD.C - standard procedures (UNITREAD etc)

PMETSK.C - task switching, signal, events

PMEUTL.C - various routines used by the Port-a-kit

PMEIO.C - the input/output routines (RSP/IO and BIOS)

PMERW.C - the UnitRW functions

PMELNG.C - main LONGOPS routine

PMELUT.C - LONGOPS utilities

PMENAT.C - native code and relocation stubs: must be present even if native code is
not supported.

• If DEBUG is #defined in PMEDEF.H

PMEDBG.C - interactive debugger

• If baby_compiler is #defined in PMEMC.H

PMECAL.C - the rest of PMEFEC

• If stride_semaphores is defined in PSEMA.H

PSEMA.C - support for global semaphores

Link them together as PSYS (for example). See page 23 for details of running PSYS and
options available.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 6

Bringing up the Port-a-kit
RSP/IO and Bios

3.3 RSP/IO and Bios

The Port-a-kit has combined the various functions of the RSP/IO, bios and SBios into one
file called PMEIO.C.

3.3.1 Bios

There are four macros that are bios related and must be supplied for the new host:

GETCH This macro should expand to ‘C’ code that reads one character from the
keyboard without echoing it.

If it is necessary to switch the terminal into half duplex this should be
added to pme_exit() in PMEUTL.C.

PUTCH(c) This macro should expand to ‘C’ code that outputs the character c to the
terminal. This routine is used to echo input as well as normal p-System
terminal output.

While this could be done more portably by using putchar(c), it was felt
that performance was an issue here and that if a faster system call could
be used, it would be better.

PUTCH can be #defined to be putchar without affecting the
functionality of the Port-a-kit bios.

Some output buffering can be handled by the Port-a-kit to improve
performance. See the definition of BPUTCH in PMERW.C for an
example of how this can be done.

CharWaiting This macro should expand to ‘C’ code that returns TRUE if a character
has been typed on the keyboard, otherwise FALSE.

If it is not possible to ascertain whether or not unread characters have
been typed at the keyboard FALSE should be returned.

This macro controls the ability to buffer input and handle special
p-System keys (such as Stop/Start, Flush and Break). If CharWaiting
cannot be implemented the Port-a-kit will not be able to correctly
process any special characters.

CBufSize This is the number of characters that can be buffered internally by the
Port-a-kit. If CharWaiting is not available this macro may as well be set
to 0.

Characters received after the buffer has become full are thrown away
(the bell is rung for every character typed when this has happened). A
reasonable size for this buffer is 32 characters.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 7

Bringing up the Port-a-kit
RSP/IO and Bios

3.3.2 Special Key Processing

The p-System has its own interpretation of certain keys. This section looks at keys that may
cause problems and discusses possible solutions.

• ETX or ^C is the ’accept’ key in the p-System editor. It may be the host interrupt key.

The best solution is to #define GETCH in such a way that ^C is passed to the p-System
without causing an interrupt, or to disable ^C altogether (in TertiaryBootStrap() and
enable it in pme_exit())

If disabling ^C causes it to disappear, rather than be read in, it may also be necessary
to change ETX under p-System using the SETUP utility.

• End-Of-File, typically ^D or ^Z. This key should be passed intact to the p-System.

If the host end-of-file character causes GETCH to return -1, CEOFChar should be the
value of that character. The Port-a-kit bios will automatically translate this.

Ideally, GETCH should return all characters untouched, including end-of-file.

• BREAK or ^@ as the p-System Break key. Because it is ASCII NUL some hosts do
not pass it back through a read.

Ideally, GETCH should pass ^@ back untouched.

If the host does not return ^@, SETUP should be used to change the Break key.

On some hosts, this is the interrupt key. Here, either GETCH must be able to return it
(as for ETX above) or else the Break key must be changed.

• p-System Break. The Break condition is tested by the routine that buffers the console
input. The buffering routine is called from various points in the PME: at
CONSOLE/SYSTERM I/O, at jumps and at calls/returns. This checking slows the
interpreter down and can be switched off by #undef’ing PSBREAK in PMEDEF.H
(see ’Tuning the Port-a-kit’).

• Stop/Start or ^S/^Q. This is usually the host stop-output key.

If the host handles ^S/^Q correctly, there is no reason why this function should not be
left to the host OS. However, if it is required that the PME handles it, the following
options are suggested:

If GETCH can return ^S untouched, the PME will handle it.

If ^S is handled by the host, some combinations of ^S with Break and Flush may not
behave identically to p-System. i.e., it may be necessary to press ^Q before p-System
responds again, whereas Break should cancel ^S and Break immediately.

• Flush output ^F. If GETCH cannot return this character untouched, use SETUP to
change the Flush key to something else.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 8

Bringing up the Port-a-kit
RSP/IO and Bios

3.3.3 Standard Bios Entry Points

The following list gives the all the bios entry points assumed to exist under native p-System
implementations, and indicates where in the Port-a-kit the equivalent code, if any, can be
found.

Because the RSP/IO and bios have been more or less combined, the equivalent of one bios
call may be handled in part by one routine and in part by another, with the objective being
to make the source more readable, portable and still flexible.

SYSINIT The first routine called when the p-System is bootstrapped. In a native
environment it is used to initialize the hardware.

SYSHALT Called when the p-System terminates through a H(alt. Achieved by
issuing unitread(0), in the Port-a-kit this simply calls pme_exit().

CONINIT UnitClear(1, ...);

CONSTAT UnitStatus(1, ...);

Can only return useful information if CharWaiting is implemented and
internal character buffering is used.

CONREAD UnitRead(1, ...);

Also see the routines ubrc(), ubrcn(), ubrs(), ubrsn() in PMERW.C and
the macros GETCH, CharWaiting in PMEMC.H, ReadCh in
PMEMAC.H and the routine ChGet in PMEIO.C.

CONWRIT UnitWrite(1, ...);

Also see the routines ubwc(), ubwcn() in PMERW.C and the macro
PUTCH in PMEMC.H.

SETDISK Used to hold the current disk number in a native p-System environment.

Not applicable in the Port-a-kit, since the level of i/o is much higher.

SETTRAK Used to hold the current track number in a native p-System environment.

Not applicable in the Port-a-kit, since the level of i/o is much higher.

SETSECT Used to hold the current sector number in a native p-System
environment.

Not applicable in the Port-a-kit, since the level of i/o is much higher.

SETBUFR Used to hold the buffer used to hold data read/written to/from disk in a
native p-System environment.

Not applicable in the Port-a-kit, since the level of i/o is much higher.

DSKREAD UnitRead();

DSKWRIT UnitWrite();

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 9

Bringing up the Port-a-kit
RSP/IO and Bios

DSKINIT In a native p-System environment this resets the current disk.

Not applicable in the Port-a-kit, since the level of i/o is much higher.

DSKSTRT In a native p-System environment this starts the current disk. Used in the
days before more sophisticated floppy controllers were available.

Not applicable in the Port-a-kit, since the level of i/o is much higher.

DSKSTOP In a native p-System environment this stops the current disk. Used in the
days before more sophisticated floppy controllers were available.

Not applicable in the Port-a-kit, since the level of i/o is much higher.

PRNINIT UnitClear(6, ...);

PRNSTAT UnitStatus(6, ...);

Some mechanism must be available on the host to establish the status of
the printer device being used for this to provide any useful information.

PRNREAD UnitRead(6, ...);

Calls ubr(), ubrn() to read the printer as a serial device. The behaviour is
undefined if the attached printer does not allow a read operation.

PRNWRIT UnitWrite(6, ...);

Calls ubw(), ubwn() to write to the printer as a serial device.

REMINIT UnitClear(7, ...);

REMSTAT UnitStatus(7, ...);

As for PRNSTAT above, if the host does not allow you to establish such
status information, the Port-a-kit cannot return any useful information.

REMREAD UnitRead(7, ...);

Calls ubr(), ubrn().

REMWRIT UnitWrite(8, ...);

Calls ubw(), ubwn().

SERINIT UnitClear();

SERSTAT UnitStatus();

The same applies as for REMSTAT and PRNSTAT above.

SERREAD UnitRead();

Calls ubr(), ubrn() on the required serial device.

SERWRIT UnitWrite();

Calls ubw(), ubwn() on the required serial device.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 10

Bringing up the Port-a-kit
RSP/IO and Bios

CLKREAD Called from UnitStatus(0, ...);, this is simulated in the Port-a-kit with the
macros LowClock, HighClock in PMEMC.H.

QUIET See Quiet in PMEMAC.H. An interrupt mask is incremented, this mask
should be tested by any interrupt routine and the interrupt ignored if the
mask is non-zero.

ENABLE See Enable in PMEMAC.H. This is the inverse of Quiet.

3.4 Debugging tools

To enable the PME interactive debugger, #define DEBUG in PMEDEF.H. This tool allows
P-codes to be single stepped (and disassembled), breakpoints to be set on various events
(such as encountering a particular P-code, entering a particular segment or procedure within
a segment or reaching a given offset within a procedure, when a location changes or
changes to a given value), inspection (and modification) of main memory and so on.
(Typing ? in the debugger lists the commands available. More documentation on the
debugger will be available shortly)

3.5 LONGOPS

The Port-a-kit includes ‘C’ code to handle those arithmetic operations performed by the
p-System LONGOPS unit that are written in assembly code. In order for the Port-a-kit to
intercept calls to LONGOPS procedure 2 (the only one written in assembler and emulated
by the Port-a-kit) the LONGOPS code segment must be placed in SYSTEM.PASCAL.

During the p-System boot, Port-a-kit searches SYSTEM.PASCAL for the LONGOPS unit
and remembers its position in the environment. Calls to that unit may then be trapped with
the minimum of overhead.

3.6 REALOPS

The representation of reals in the Port-a-kit is determined by the host ‘C’ compiler. This
format may not necessarily be IEEE format.

In those cases where the native ‘C’ compiler uses more than 32 bits, but less than 64 bits for
representing reals the following solution is suggested: Configure the p-System for double
precision reals but only use the single precision host format.

The p-System unit REALOPS assumes IEEE format with a specific word (16 bit) ordering.

3.7 SYSTEM.MISCINFO

The format of the SYSTEM.MISCINFO file is byte sex dependent.

Thus before booting p-System on a new machine make sure that the SYSTEM.MISCINFO
you are using has the correct byte sex.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 11

Chapter 4

Tuning the Port-a-kit

4.1 Registers

‘C’ provides a mechanism to allow the programmer to indicate which variables are
frequently used. The reserved word register is prefixed to a declaration. It is compiler
specific as to how many, if any, register variables are actually kept in registers. The
Port-a-kit defines the macros REG1, REG2..REG9. Consult your ‘C’ user guide to find out
how many register variables are effective. Edit the file PMEMC.H to define the appropriate
number of macros as register, the remainder are defined as null.

4.2 Assembler Code

It is unlikely that your ‘C’ compiler generates the best possible machine code from the
Port-a-kit source. Most compilers can produce assembler output. This assembler in turn can
be assembled. There are a few critical areas where hand tuning this assembler could
improve performance.

a) A surprising amount of time is spent fetching and decoding the next instruction.

The largest saving to be made in hand tuning the Port-a-kit is in this area. Typically
your ‘C’ compiler will generate code to check the ranges on the switch expression.
These can be removed. Also the switch jump table can be moved, if it is not already
there, to the head of the switch.

b) The OPCODE macro (in PMEFEC.C) allows for the situation where the p-code can
potentially be held in a register variable.

If the fetch/exec loop has been hand tuned with the #define tweaked flag, the p-code
should be in some fixed register. Thus it is possible to further enhance the fetch/exec
loop code (as above) to speed up all the short load/store p-codes that use OPCODE.

Note that if the assembler is not being hand tuned, the extra code created by the
assignment to count in the tweaked version of OPCODE could actually slow the
interpreter down, depending on how well your compiler handles register variables.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 12

Tuning the Port-a-kit
p-System break key

4.3 p-System break key

If the name PSBREAK is #defined in PMEDEF.H, all jumps, calls and returns check for
console input. This allows the p-System break to be detected. If the Break facility is not
required, PSBREAK should be #undef’d. There is something like a 10% performance
penalty in enabling break.

4.4 Profiling and debugging

The names DEBUG and STATS are used to switch internal debugging and profiling on/off.

Some ‘C’ compilers insert code at the head of each function to check that stack overflow is
not about to occur. This overhead should be avoided if possible, by compiling the
interpreter without stack checking.

Profiling is possible with some ‘C’ compilers. This can be useful in determining which
areas of the Port-a-kit would benefit from tuning. See page 12 for comments on the likely
areas and how to improve them.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 13

Chapter 5

Advanced Bios

5.1 Events

The routine Event() can be called by any event handler to signal any associated p-System
semaphore.

An example is the timer event in PMETSK.C (which only works if the library routines
signal and alarm are supported).

To be expanded…

5.2 Special calls to Unitread/Unitwrite

The Port-a-kit supports the following special calls:

UnitWrite(133, filename, 0, unit, access);
Open host file on given p-System unit. access is made up of the values 1 for reading, 2 for
writing and 4 for re-use existing file (when write bit set).

UnitWrite(134, dummy, 0, unit, 0);
Close host file attached to given p-System unit.

UnitRead(135, buffer, len, unit, 0);
Read len bytes from host file attached to unit. If IOResult is 20 (read past end of file), call
UnitStatus(135, stat, 0); to find out how many bytes were actually read (in stat[0]).

UnitWrite(135, buffer, len, unit, 0);
Write len bytes from buffer to host file on given unit.

UnitRead(136, dummy, blk, unit, offset);
Perform a seek to given blk and offset within host file attached to unit. The actual argument
to seek is pBlkSize * blk + offset where pBlkSize is 512 (i.e., a p-System file block).

UnitWrite(137, buffer, len, 0, 0);
Set up the I/O buffer to be used on subsequent calls to Import/Export (see below). The
buffer must be at least 3k long as it is used to hold the p-System directory (2k) and buffer
the file during transfer. The larger the better.

UnitRead(138, options, 0, unit, 0);
Import host file to p-System volume open on unit. The options field is identical to the ’-i’
option on the Pdir utility: hostname,psysname,type (see page 30 for more details of Pdir).

UnitWrite(139, options, 0, unit, 0);
Export p-System file from volume open on unit to given host file. The options field is

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 14

Advanced Bios
Special calls to Unitread/Unitwrite

identical to the ’-e’ option on the Pdir utility: psysname,hostname (see page 30 for more
details of Pdir).

The filename and options fields must be STRING type.

5.3 Multi-User facilties

In a multi-user environment there are two main concerns:

1. There must be a safe method of sharing resources. A resource might be a database, line
printer, etc.

2. As more users gain access to a particular machine it is likely that the response time
will increase. To reduce this loading the application developer should have access to
tools that allow programs to be configured or configure themselves.

5.4 Global/Stride semaphores

These are not connected with p-System semaphores in any way. Rather they are a method
of testing and setting flags accessible to two independent p-Systems under the hosted
Operating System.

As the name suggests the implementation is compatible with the calling sequence defined
for Stride computers.

The basic primitives are:

• Get control of one or more semaphores.

• Release control of one or more semaphores

• Clear one or more semaphores

• Check semaphore for existence and/or controlling user.

• Obtain statistics on all global semaphores.

• Clear all semaphores.

In order to implement this extension to p-System some form of shared memory must be
supported by the host operating system.

5.4.1 Using the semaphores

All semaphore operations are performed using unitread/write p-System unit 132 (the same
as Stride):

Unitwrite(132, sema, num_sems, sem_op, 1)
Unitread(132, sema, num_sems, sem_op, 1)

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 15

Advanced Bios
Global/Stride semaphores

Where the parameter are:

132 The unit number used to identify semaphore operations.

sema A data buffer containing one or more semaphores.

num_sems The number of semaphores contained in sema.

sem_op The operation to be performed.

1 This value must be given.

The semaphore data structure is an 18 byte area. The first 2 bytes are used to hold the users
task number and are filled in by the system. The remaining 16 bytes are available for
programmer use.

Sem_Type = Record
Task_Num :Integer; (* Filled in by the system *)
Sem_Info :Packed Array[1..16] of Char
End;

Release control

A write request with a a sem_ops of 0 (zero) releases control of one or more
semaphores.

It is possible to release control of a semaphore by a user for which control was
not originally obtained.

IORESULT error codes:

0 Control of all requested semaphores was released.

2 Feature not supported.

Get control A write request with a sem_ops of 1 gives control of one or more semaphores.
If control cannot be obtained for all of the semaphores, control will not be
granted for any of them. In this case the request must be repeated.

IORESULT error codes:

0 Control of all requested semaphores was obtained.

1 Control of the semaphores was rejected.

2 Feature not supported.

3 Not enough room in the semaphore table.

Check sempahores
A write request with a sem_ops of 2 checks on the existence of one or more
semaphores.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 16

Advanced Bios
Global/Stride semaphores

IORESULT error codes:

0 The semaphores exist and are all under the control of the calling user.

1 At least one of the semaphores does not exist in the semaphore table.

2 Feature not supported.

3 The semaphores exist but not all are are under the control of the
calling user.

Clear users semaphores
A write request with a sem_ops of 3 clears all the semaphores associated with
the calling user.

Read back semaphores
A read request with a a sem_ops of 4 reads all of the active semaphores in the
system’s semaphore table. The num_sems field must specify the maximum
number of semaphores that can be held in the callers buffer.

The list will be terminated with a semaphore who’s task number is zero.

IORESULT error codes:

0 Information was returned.

2 Feature not implemented.

Get semaphore statistics
A read request with a a sem_ops of 5 reads the following information into the
data buffer.

Data buffer offset:

0 Maximum number of system semaphores.

2 Number of active semaphores.

4 Calling user’s task number.

IORESULT error codes:

0 Statistics were returned.

2 Feature not implemented.

Clear all semaphores
A write request with a block number of 6 clears the system semaphore table.
All entries are cleared for all users.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 17

Advanced Bios
Global/Stride semaphores

IORESULT error codes:

0 Clearing was performed.

2 Feature not implemented.

5.5 Releasing a users timeslice

The call:

unitwrite(132, dummy, 0, 0, 2)

causes the users current timeslice to be released.

Programs attempting to gain access to a group of semaphores should release their timeslice
if a semaphore operation fails to grant access; and then try again.

5.6 PSUTIL

This utility read and manipulates the system data file used by the global/Stride semaphores.

-q Display information about the current configuration.

-r Reset the semaphore handling for all users. Warning: this is a dangerous option
and should only be used if, for any reason, the semaphores have become locked
up.

-s Recreates the system semaphore data file to handle a different number of
semaphores. The file should be created in a system directory to which all users
have access.

usage: psutil <options>
where <options> are:

-q query p-System semaphore configuration
-r reset p-System semaphores
-s<num> set number of p-System semaphores

5.7 Inter-User communication

The ability for different users being able to send messages to each other is not usually
provided by operating systems.

It would be possible to implement this feature via shared files.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 18

Chapter 6

Optional tools

The following tools are not supplied as a standard part of the Port-a-kit. For further details
of implementation on your host cpu please contact Knowledge Software.

6.1 POPTYSER(Optimiser)

This works at the P-code level and can be supplied on a MS-DOS or Unix disc for porting
to the new host.

6.2 Native code generator

The POP-NCG system provides a toolbox and framework for providing optimizing native
code generators.

A typical estimate for producing a version of POP-NCG targetted to a new cpu is 4-5
months.

6.3 System Assembler

It would be possible to produce a version of the p-System assembler.

6.4 Turtlegraphics

It is not anticipated that this option will be required. Given demand Turtlegraphics could be
implemented.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 19

Chapter 7

Mini/Mainframe considerations

Most large computers have evolved over a period of many years. They are invariably
oriented towards handling large numbers of users and batch processing. There are thus a
number of areas where they differ in performance/structure from micro-computers.

• Usually have a low relative cpu performance.

• I/O handled by specialized hardware units.

• Single character I/O usually very inefficient.

• Block serial I/O usually well supported.

• 64K restrictions. Some Operating Systems/cpus have code/data size restrictions of this
magnitude.

These considerations have been taken into account in the design and implementation of the
interpreter.

7.1 Shared code

Most modern Operating Systems allow the total size of running programs to be larger than
the available memory. This is achieved by swapping code and data to/from memory and
disc. To reduce the space taken up by programs some Operating Systems allow code to be
shared between users. Thus if more than one user is running a particular program there only
need be one copy of that program in memory. This sharing cuts down swapping and thus
improves overall system performance.

The ability to share Port-a-kit program code will be available on many machines. This
sharing usually requires the intervention of a system administrator to configure the sharing.
Check with your ‘C’ compiler guide and Systems Administrator for the availability of
Port-a-kit code sharing.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 20

Chapter 8

Portability considerations

All computers are different. This is true across manufacturers machines and ranges of
machines from the same manufacturer. An efficient P-code interpreter providing multi-user
facilities is not going to be 100% portable.

Experience with porting other software between different environments has shown that it
can be done. The price paid is a slower running program with few interfaces to its host.

There are two conflicts of interest:

1. The P-code interpreter must be as fast as possible. It must also be portable to a wide
range of machines.

2. Application developers, under user pressure, want to provide a good interface to the
host environment. All hosts are different.

There are three basic obstacles to portability:

1. ‘C’ compilers. Contrary to popular belief ‘C’ is not a very portable language. Its
philosophy of allowing programmers to get close to the target machine coupled with
the lack of a definitive standard has lead to a wide variety of compilers. Compilers
differ in the facilities offered. Also there are some quite fundamental decisions that are
specified as being implementation dependent, in the language definition.

2. Underlying hardware. This affects the way the ‘C’ compiler handles features and could
impact the P-machine’s view of the world.

3. Facilities provided by the host operating system. The facilities required to run a basic
p-System under a given operating system are virtually assured. However, the more
sophisticated features will rely on the host operating system providing the necessary
features.

8.1 ‘C’ compilers

Previous experience with ‘C’ compilers has already suggested a number of areas where
caution is required. As the Port-a-kit is compiled with new ‘C’ compilers other portability
problems will be uncovered.

The ‘C’ preprocessor provides a method of configuring the source to be handled by a
variety of compilers. Those areas containing constructs with known portability problems

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 21

Portability considerations
‘C’ compilers

are defined as macros. Conditional compilation then selects the appropriate definition.

8.2 The underlying hardware

There are five basic issues:

1. The method of representing integers. The P-machine definition specifies two’s
complement. There is no intrinsic reason why one’s complement should not work
provided no ’dirty tricks’ are used.

2. Size of Integers. The P-machine assumes an integer size of 16 bits. Host processors
may have more than one integer size provided that one of them is 16 bits long.
Processors having a larger minimum integer size may present severe portability
problems. For instance a machine having a minimum integer size of 24 bits could be
handled provided it used word addressing, but not if it used byte addressing.

3. Size of reals. The P-machine assumes that single precision reals will fit in 32 bits and
double precision in 64 bits. If single precision reals occupied more than 32 bits but less
than 64 bits it would be possible to treat single precision reals as double. This would
rule out the use of double precision.

4. Byte sex. This issue has been thoroughly handled by the P-machine. Care has been be
exercised in the design and implementation of the P-code interpreter to ensure no byte
sex dependencies creep in.

5. Byte/Word addressing. With one exception all processors currently running the
p-System are byte addressed. It is understood that with a few modifications the
p-System can be made to run on a word addressed processor. Very little experience
has been gained running the p-System on word addressed processors and so any
potential problems are unknown.

8.3 Implementing Portability

The only reliable way of producing portable software is to take into account non-portable
issues and design the software accordingly.

During development the Port-a-kit was regularly processed by a variety of ‘C’ compilers.
Two of these compilers were Intel 8086 based and two Motorola 68000 based. This ensured
that no compiler or byte sex dependencies appeared in the design or implementation.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 22

Chapter 9

Configuration Options

The p-System itself has various internal options that can be configured and the interface to
the host Operating System will need to be easily modifiable.

To start the interpreter, execute

PSYS volname

where volname is the host name of a p-System bootable volume. If volname is omitted,
PSYS will try to boot from the file specified by DefaultSysDisk in PMEMC.H

Various configuration options may be specified after filename. This will be dependent on
the host Operating System having the ability of passing parameters to a program when it is
executed. The following section detail these optional parameters (if available).

9.1 Code pool size

When booting the Port-a-kit uses the following rules to determine the code pool size.

1. If a -c option is specified that value is used (see below).

2. SYSTEM.MISCINFO is examined and its code pool field definitions (internal or
external and size) are used.

PSYS volname -c<size>

allocates <size>k bytes for the external code pool. If <size> is zero, p-System will boot
with an internal code pool. If <size> is omitted, a default of 85 is used - this is a good
general size for the external code pool.

If PSYS is unable to allocate enough memory to satisfy the request, it successively reduces
the code pool size until it succeeds or the size becomes less than 36, in which case an

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 23

Configuration Options
Code pool size

internal code pool is used.

9.2 Data space

The p-System has an upper limit of 64K and the IARM quotes a minimum limit of 36K. By
default the Port-a-kit creates a data space of 64K. This value can be lowered.

PSYS volname -d<size>

allocates <size>k bytes for main p-System memory (heap/stack space). <size> must be
less than or equal to 64. If PSYS is unable to allocate the requested amount, it successively
reduces <size> by 5-10% until it succeeds or <size> becomes less than 36, in which case
the Port-a-kit will not attempt to boot the p-System. If <size> is specified as less than 36,
the Port-a-kit will attempt to boot the p-System, assuming the allocation succeeds first time,
however its behaviour is undefined.

9.3 Mounting external files and serial devices

Assuming that the host Operating System provides a set of primitives for accessing serial
channels a method of configuring these to map onto p-System serial volumes would be
desirable.

PSYS volname -m<unitno><device>

mounts <device> as p-System unit <unitno>. <unitno> must be a valid unit to connect
either a ’disk’ (4, 5, 10-13) or a serial device (6-8, 39-127) *. If <unitno> is omitted, PSYS
will prompt for it.

9.4 Printing

PSYS volname -p<device>

connects the p-System unit PRINTER: to the specified <device>. -p<device> is identical
to -m6<device>. By default, PRINTER: is connected to stdprn under StreamIO. <device>
may be a host file that can be printed at a later date.

All large computer systems operate a print spooler for outputting to the line printer. A
method of connecting the p-System printer volume to this spooler will be needed.

* Note: these numbers vary according to how the p-System is set up. 4 & 5 are
usually reserved for left and right ’floppy’. 6 is PRINTER:, 7 is REMIN:, 8 is REMOUT:
10 thru’ 12 are the ’externally-mounted disks’ (9 is the boot device). 14 thru’ 38 are usually
subsidiary volumes. Which devices are available for the ’-m’ option is determined by the
units reserved for subvols.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 24

Configuration Options
Printing

For rapid printing of text files it may prove more effective to use a print program from
within the p-System rather than the F(iler T(ransfer command.

Print spoolers vary in how they handle output sent to them. Some cause the spooled text to
be sent to a file which is only printed when that file is closed, i.e.,the p-System is H(alted.

9.5 RAMDISK

PSYS volname -r<size>

allocates <size>K bytes for the p-System RAMDISK: which is mounted as #11: If <size>
is omitted, the default is 256. As with the data and code pool options, if the allocation fails,
PSYS will successively reduce <size> until it succeeds or <size> drops below 25, when
RAMDISK: will not be created - 25K is considered the minimum, useable RAMDISK.

9.6 Timer Interrupt

Assuming that some method of both causing and catching a cyclic timer interrupt is
available on the host, this option specifies the frequency (assumed to be in seconds).

PSYS volname -t<sec>

Every <sec> seconds, a p-System event associated with the timer is signaled. See page 26
for a discussion of this facility under Unix, and PMEDEF.H for the event number
associated with the timer #define TICK_EVENT.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 25

Chapter 10

Unix

The Unix Operating System, in all its variations, is becoming available on an increasing
number of computers. Most new computers support Unix alongside any manufacturers
proprietary Operating System. Also many manufacturers are porting Unix to many existing
machines.

As with ‘C’ the belief of ’standard’ Unix is not borne out by reality.

10.1 Using ioctl

To provide the required functionality for p-System terminal i/o under Unix, it is necessary
to use the library routine ioctl to alter the attributes of the terminal.

During its development, the Port-a-kit was ported to a Unix environment so the prototype
for the use of ioctl is already in the ‘C’ source code. It is conditionally selected on the
#define has_ioctl flag in PMEMC.H (see page 4).

ioctl allows the use of getchar() to find out whether any characters are waiting to be read by
issuing a ’no-wait’ read and testing the result. If any characters are waiting, the first of them
is read in by getchar() and is stored in a single character buffer (in the ConBuf structure -
see PMEVAR.H)

Further complications arise from the fact that the Port-a-kit needs to issue reads that ’wait’
for input if no characters are waiting. The Port-a-kit also needs to read strings from the
keyboard in PMEDBG (see page 4 for details of ReadString, see PMEUMC.H for a
prototype of Unix machine definitions).

10.2 Using signal

The library routine signal is the simplest way for the Port-a-kit handle interrupts in a
graceful manner.

The code to deal with signal is conditionally selected by the #define has_signal flag in
PMEMC.H. The relevant code is in InitEvents() and StopEvents() in PMETSK.C

All ’kill’ interrupts (Quit, Hangup, Interrupt) should be routed to pme_exit() to close down
the Port-a-kit gently (closing files and restoring the keyboard state if necessary).

Other interrupts, such as a clock interrupt (Alarm under Unix) can be routed to handlers that
call Event() on a p-System event number. e.g., code is included in PMETSK.C to show how
a clock interrupt can trigger a p-System event (see InitEvents(), StopEvents() and
ring_alarm() in PMETSK.C) An option is provided on the Port-a-kit command line (-tN)

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 26

Unix
Using signal

that activates this.

10.3 Using prof

prof is a Unix profiling tool that provides a good indication of how much time is spent in
each routine.

Code has been included into the Port-a-kit, conditionally selected by the #define has_profile
flag, that places profiling marks into key places in PMEFEC.C This gives a better
breakdown of the performance of groups of P-codes.

Any profiling information added to the Port-a-kit should always be conditionally selected
by a #ifdef.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 27

Chapter 11

Input / Output Considerations

11.1 Input / Output in ‘C’

Two forms of i/o are generally provided in ‘C’:

1. buffered, or ’stream’, input/output

2. unbuffered input/output

These two forms have different functions for file input/output and the appropriate
definitions are selected by the #define StreamIO flag in PMEMCD.H (the associated
definitions are in PMEMC.H)

In general, the ’stream’ file i/o will be more efficient than the unbuffered method.
Unfortunately, some ‘C’ environments do not provide the full functionality required by the
Port-a-kit with ’stream’ i/o. The best approach is to select ’stream’ i/o first, and if the
p-System behaves in an unexpected manner, assume that full functionality is not present
and alter the flag. Then recompile the Port-a-kit.

11.2 Terminal Input / Output

Since terminal i/o is handled explicitly by user-supplied macros, it is possible to make the
terminal buffered or unbuffered in the true ‘C’ sense, i.e., using the same i/o primitives as
for file i/o, or using pure system calls.

Terminal output benefits from being buffered and the routine ubwc() in PMERW.C uses the
file i/o primitive WriteFile to achieve this if possible.

Instead of PUTCH, this routine uses BPUTCH (Buffered PUTCH) which may be coded to
save characters in a buffer for outputting with writefile.

Terminal input is complicated by the fact that the Port-a-kit requires that the function
’key_pressed’ to be available for full p-System functionality. This is explicitly coded as the
macro CharWaiting and the routine QConsole (in PMEIO.C). See page 7 for further
discussion of terminal input considerations.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 28

Chapter 12

Native Code Support

When the Port-a-kit is ported to a new processor, native code will not need to be supported
until either:

a) POP-NCG becomes available for that processor

b) SYSTEM.ASSEMBLER becomes available for that processor

An example of native code support for the Motorola 68000 is given in the Port-a-kit,
conditionally selected by the #define NAT68000 flag in PMEMC.H

When native code is not supported, PMENAT.C will contain stubs that cause execution of
p-System to halt when either:

a) Inline native code (the NAT P-code) is encountered.

b) A call is made to a wholly native code procedure (as produced by the System
Assembler).

PMENAT.C also contains a stub for segment relocation. This is performed on every
segment containing assembly code procedures.

12.1 SYSTEM.PASCAL containing native code

Some existing SYSTEM.PASCALs contain segments that have native code procedures that
are only used by such facilities as networking. The Port-a-kit can only boot these p-Systems
if the M_PROC flag in PMEMC.H is set to an appropriate value, even if the native code is
never used. This is because the p-System itself checks all operating system segments for
compatibility with the interpreter. Owing to a bug in the p-System bootstrap code, if
incompatible native code is found, an attempt is made to print a message using the
KERNEL segment before it is resident and p-System loops or crashes! So always make sure
that M_PROC is correctly set - at worst the Port-a-kit will halt with the ’Native code
unsupported’ message.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 29

Chapter 13

Using Pdir

13.1 Creating Pdir

Compile PDIR.C and link it with PMEUTL, PMEIO, PMERW and PMETSK. Pdir uses
many of the internal PME I/O routines, so it is completely compatible with the
UnitRead/Write calls listed on page 14.

When running, Pdir allocates about 20K of working storage for file buffers. If this is not
acceptable, alter the #define TransBufSize in PDIR.C. The actual amount allocated is
SYSCOMSize + MemRecSize + 2K for a directory buffer + TransBufSize. (SYSCOMSize +
MemRecSize is 110 bytes). See comment on I/O buffer size for UnitWrite(137,...) on page 14.

13.2 Pdir Options

PDIR volname -l

list p-System volume in host file volname. This is virtually the same as the E(xt-dir option
in F(iler.

PDIR volname -x<nblks>

extend p-System volume to <nblks> blocks. This can be used to dynamically increase the
size of a volume. Note that the host file volname will not actually change size until more
files are imported into it. It is also possible to shrink a directory. Again, the host file will
not change size. However, when importing a subvolume, Pdir will extend the target
directory as necessary, as if the subvolume were physically full. On those hosts that do not
support extension of contiguous files the p-System volume will have been created with its
full size.

PDIR volname -c<nblks><pvolname>

create host file volname as an empty p-System volume, logical <nblks> long, with
p-System name <pvolname>. If <nblks> is omitted, the default is 2560. If <pvolname> is

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 30

Using Pdir
Pdir Options

omitted, it is derived from volname. e.g.,

PDIR fred.svol -cfred ; create fred.vol, 2560 blocks long, called FRED:
PDIR boot -c260 ; create boot, 260 blocks long, called BOOT:

PDIR does not create duplicate directories (although it will handle p-System volumes with
duplicate directories).

PDIR volname -i<hostname>,<psysname>,<type>

import host file <hostname> to p-System volume in volname, as p-System file
<psysname> with a file type of <type>. If <psysname> is omitted, it is derived from
<hostname>. If <psysname> ends in .TEXT, .DATA, .SVOL or .CODE the correct type
will be deduced, else DataFile is assumed. If <type> is present, it overrides the deduced
filetype. <type> may be T (for TextFile), D (for DataFile), S (for SVolFile) or C (for
CodeFile) e.g.,

PDIR main.vol -ifred.pas,fred.text ; import fred.pas as TextFile FRED.TEXT
PDIR main.vol -isyspas,system.pascal,c ; import syspas as CodeFile SYSTEM.PASCAL

PDIR volname -e<psysname>,<hostname>

export p-System file <psysname> from p-System volume in volname to host file
<hostname>. If <hostname> is omitted, it is assumed to be the same as <psysname>.

Options may be combined (in any logical order) e.g., when creating a new boot volume

PDIR newboot -c300boot -ipsysos,system.pascal,c -imiscinfo,system.miscinfo …
… -ipsysulib,userlib.text -isystem.library,,c -l

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 31

Chapter 14

Existing Implementations

Host cpu OS Compiler

80286 MS-DOS MicroSoft version 4.0 and 5.1, all memory models
80286 MS-DOS Zorland version 1.10 and 2.0
80386 OS/2 MicroSoft version 5.1
68000 CP/M 68K Digital Research
68010, 68020 Unix System V.2 AT&T V.2
68000 AMOS Alpha Micro C
68020 Mirage Lattice C
ARM Arthur Northcroft C
SPARC Unix Sun C
6150 Unix IBM AIX C
MIPS Unix MIPS C

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 32

Existing Implementations

TradeMarks

Port-a-kit is a trademark of Knowledge Software Ltd.

POP-NCG is a trademark of Knowledge Software Ltd.

POPTYSER and EDIP are registered trademarks of Knowledge Software Ltd.

UCSD, UCSD Pascal and UCSD p-System are trademarks of the Regents of the University
of California.

MS-DOS is a registered trademark of Microsoft Corporation.

Unix is a trademark of AT&T.

Knowledge Software Ltd, 62 Fernhill Road, Farnborough, Hants GU14 9RZ.

Tel: (44) 0252-520667

Telex: 858893 FLETEL G.

Copyright 1987, 89 Knowledge Software Ltd. All rights reserved.

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 33

Contents

1 Introduction 1

1.1 This document . 1
1.2 Other documents . 1

2 The distribution disc 2

2.1 P-code interpreter . 2
2.2 Support Tools . 2
2.3 Directory listing . 2

3 Bringing up the Port-a-kit 4

3.1 MC . 4
3.2 Interpreter . 6
3.3 RSP/IO and Bios . 7
3.3.1 Bios . 7
3.3.2 Special Key Processing . 8
3.3.3 Standard Bios Entry Points . 9
3.4 Debugging tools . 11
3.5 LONGOPS . 11
3.6 REALOPS . 11
3.7 SYSTEM.MISCINFO . 11

4 Tuning the Port-a-kit 12

4.1 Registers . 12
4.2 Assembler Code . 12
4.3 p-System break key . 13
4.4 Profiling and debugging . 13

5 Advanced Bios 14

5.1 Events . 14
5.2 Special calls to Unitread/Unitwrite . 14
5.3 Multi-User facilties . 15
5.4 Global/Stride semaphores . 15
5.4.1 Using the semaphores . 15
5.5 Releasing a users timeslice . 18
5.6 PSUTIL . 18
5.7 Inter-User communication . 18

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 ii

Contents

6 Optional tools 19

6.1 POPTYSER(Optimiser) . 19
6.2 Native code generator . 19
6.3 System Assembler . 19
6.4 Turtlegraphics . 19

7 Mini/Mainframe considerations 20

7.1 Shared code . 20

8 Portability considerations 21

8.1 ‘C’ compilers . 21
8.2 The underlying hardware . 22
8.3 Implementing Portability . 22

9 Configuration Options 23

9.1 Code pool size . 23
9.2 Data space . 24
9.3 Mounting external files and serial devices . 24
9.4 Printing . 24
9.5 RAMDISK . 25
9.6 Timer Interrupt . 25

10 Unix 26

10.1 Using ioctl . 26
10.2 Using signal . 26
10.3 Using prof . 27

11 Input / Output Considerations 28

11.1 Input / Output in ‘C’ . 28
11.2 Terminal Input / Output . 28

12 Native Code Support 29

12.1 SYSTEM.PASCAL containing native code . 29

13 Using Pdir 30

13.1 Creating Pdir . 30
13.2 Pdir Options . 30

14 Existing Implementations 32

(c) 1987, 89 Knowledge Software Ltd, April 13, 19105 iii

