
Open Systems Portability
Checker

User Guide

Knowledge Software Ltd

November 1999

History

November 99: mcc v5.0, mcl v2.5, mce v2.5
May 98: mcc v4.3, mcl v2.5, mce v2.5
September 97: mcc v4.2, mcl v2.5, mce v2.5
April 97: APIdeduce v1.0
November 96: mcc v4.1, mcl v2.5, mce v2.5
April 96: mcc v4.0, mcl v2.5, mce v2.5
August 95: mcc v3.2, mcl v2.4, mce v2.4
December 94: mcc v3.1, mcl v2.4, mce v2.4
May 94: mcc v3.0, mcl v2.4, mce v2.4
December 93: mcc v2.3c, mcl v2.3, mce v2.3
July 93: mcc v2.3b, mcl v2.3, mce v2.3
December 92: mcc v2.3a, mcl v2.3, mce v2.3
July 92: mcc v2.3, mcl v2.3, mce v2.3
February 92: mcc v2.2, mcl v2.2, mce v2.2
September 91: mcc v2.1, mcl v2.1, mci v2.1
December 90: mcc v2.0, mcl v2.0, mci v2.0
August 90: mcc v1.0, mcl v1.0, mci v1.0

Support

Knowledge Software Ltd provides telephone and mail support for those users who have
purchased their systems from Knowledge Software Ltd.

Disclaimer

This document and the software it describes are subject to change without notice. No
warranty, express or implied, covers their use. Neither the manufacturer nor the seller is
responsible or liable for any consequences of their use.

TradeMarks

Model Implementation C Checker, Open Systems Portability Checker, OSPC and APIde-
duce are trademarks of Knowledge Software Ltd. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Knowledge Software Ltd. Farnborough, Hants, England. Tel: +44 (0) 1252-520667

e-mail: OSPC@knosof.co.uk

URL: http://www.knosof.co.uk

Copyright 1990,91,92,93,94,96,97,98,99 Knowledge Software Ltd. All rights reserved.

TABLE OF CONTENTS

Chapter 1 Introduction . 1

1.1 Background 2
1.1.1 How closely does the OSPC follow Standards? 2
1.1.2 Design aims 2
1.2 Why use the Open Systems Portability Checker? 3
1.2.1 Support for multiple architectures 4
1.3 How to use this guide 4
1.4 Contents of Guide 5
1.5 Related documents 5
1.6 Conventions 6
1.7 Reporting problems 7

Chapter 2 Getting started 9

2.1 Introduction 9
2.2 Checking the installation 9
2.3 Example 1 10
2.3.1 Removing the mcc problems 12
2.4 Using mcl 12
2.4.1 Removing the mcl warnings 13
2.5 Platform profiles 14
2.6 Example 2 14
2.7 Example 3 16
2.8 Integrating OSPC into the existing environment 19
2.8.1 Example 1 revisited 19
2.9 Using platform profiles 20

Chapter 3 Creating portable software 21

3.1 Introduction 21
3.2 What does portability mean? 21
3.2.1 Don’t compilers check? 22
3.3 What to check 22
3.3.1 Standards conformance 23
3.3.2 POSIX specifics 24
3.3.3 C specifics 24
3.3.4 C/POSIX.1 differences 24
3.4 Components of the OSPC 25
3.4.1 The Compiler 25
3.4.2 The Cross unit checker 25
3.4.3 The runtime interface checker 25

© 1997 Knowledge Software Ltd Page iii

3.4.4 The Runtime system 26
3.5 When constructs are flagged 26
3.6 Becoming conformant in increments 26
3.7 Conforming to an API 27
3.7.1 What might an API define? 27
3.7.2 Which API’s are used? 28
3.7.2.1 Optional components 28
3.7.3 Are the interface conventions obeyed? 28
3.7.4 Interface requirements specified in APIs 29
3.7.5 Function calls 29
3.7.5.1 Status flags 31
3.7.5.2 Use of objects defined in API’s 31
3.7.6 Optional constructs 32
3.7.7 Use of headers 32
3.7.7.1 Incorrect header contents 33
3.7.8 Use of API defined types 33
3.7.8.1 struct fields 33
3.7.8.2 Type need not be scalar 34
3.7.9 Symbolic name need not be constant 34
3.7.10 Implementation specific and future problems 34
3.7.10.1 Identifiers specified to have properties 35
3.7.11 Use of identifiers of unknown status 35
3.7.12 Identifier specified by several API’s 36
3.7.13 Can all referenced API’s be detected? 36
3.7.14 Information output by an API checking tool 36
3.7.14.1 Information summary 37

Chapter 4 User interface and configuration 39

4.1 Introduction 39
4.2 Command line options 39
4.2.1 Abbreviating options 40
4.2.2 Numeric parameters 40
4.2.3 String parameters 41
4.2.4 On/Off options 41
4.2.5 Default option settings 42
4.3 Local options file 42
4.3.1 Creating a local options file 43
4.4 Error reporting 43
4.4.1 Locating the error files 45
4.5 Platform profiles 45
4.5.1 Paths 45
4.6 Common options 46
4.6.1 Changing the configuration 46
4.7 Environment variables 47

© 1997 Knowledge Software Ltd Page iv

4.7.1 Predefined variables 48
4.8 Order of reading setup information 48
4.8.1 Processing the component profiles 49
4.9 Integrating with other tools 49

Chapter 5 OSPC source checking 51

5.1 Introduction 51
5.2 Using mcc 51
5.2.1 Error reporting 55
5.2.2 Forgetall 56
5.3 Nonconforming constructs 56
5.4 String contents 57
5.5 Status flags 57
5.6 Sizes of datatypes 58
5.6.1 Using prototypes 59
5.6.2 Types of constant expressions 59
5.7 Embedded SQL 60
5.8 Lint checks 61
5.8.1 Identifier usage 61
5.8.2 Use of headers 61
5.9 Coding standards 62
5.9.1 Code layout 62
5.9.2 Implicit casts 62
5.9.3 Loop checks 62
5.9.4 Appearance of a comment 62
5.10 Metrics 63
5.10.1 Which metric? 63
5.10.2 dispmet 63
5.11 make 63
5.11.1 ccc 64
5.11.2 c89/mcc 65
5.11.3 Scripts 65
5.12 Other C compilers 66
5.13 c89 67
5.13.1 c89 options 67
5.13.2 c89 file types supported 68
5.14 Summary of options 69

Chapter 6 Conforming to an API 73

6.1 What access methods might an API specify? 73
6.2 Which API’s are used by an application? 73
6.2.1 Optional components 74
6.3 Are the interface conventions obeyed? 74

© 1997 Knowledge Software Ltd Page v

6.4 Interface requirements specified in API’s 74
6.5 Function calls 75
6.5.1 Function arguments 75
6.6 Using the value of identifiers 77
6.7 Optional constructs 79
6.7.1 Feature test macros 79
6.8 Use of headers 80
6.8.1 Valid headers 80
6.8.2 Incorrect header contents 81
6.9 Use of API defined types 81
6.9.1 Struct fields 82
6.9.2 struct initialisation 83
6.9.3 Type need not be scalar 83
6.10 Symbolic name need not be constant 83
6.11 Declaration/Definition checking 84
6.11.1 Exceptions 85
6.11.2 Using #undef 85
6.12 Reserved names 86
6.12.1 Platform specific identifier files 86
6.12.2 Identifiers specified to have type related properties 87
6.13 Identifier specified by several API’s 87
6.14 Can all referenced API’s be detected? 88
6.15 Information output by an API checking tool 88
6.15.1 Information summary 88
6.15.2 Use of identifiers of unknown status 89
6.16 Understanding the output messages 89
6.16.1 Arithmetic performed on object taking symbolic or

discrete values . 90
6.16.2 Assigning an out of range value 90
6.16.3 Assigning symbol not given in standards profile 90
6.16.4 Assigning value not explicitly given in standards profile . . . 90
6.16.5 Bad combination of symbolic constant: use X | Y | Z 91
6.16.6 Bit-wise operations may not be performed on this

symbolic object . 91
6.16.7 Comparison against a value not explicitly allowed in the API 91
6.16.8 Comparison against symbol not given in standards profile . 91
6.16.9 Comparison against value standards profile says

cannot happen 91
6.16.10 Dubious arithmetic performed on object taking

symbolic or discrete values . 91
6.16.11 Field ‘blah_blah’ of struct is not defined in the standard . . . 92
6.16.12 Header name not given in API 92
6.16.13 Incorrect symbolic constant used: need one of {X|Y|Z} . . . 92
6.16.14 Initialiser assumes a specific ordering of fields 92
6.16.15 ‘memchr’ library function needs type from header file 93

© 1997 Knowledge Software Ltd Page vi

6.16.16 Macro ‘blah’ is not always a constant 93
6.16.17 Needs to be protected by the feature test macro _BLAH_ . . 93
6.16.18 Nonsensical expression to assign to this object 93
6.16.19 Nonsensical expression to compare against this object . . . 94
6.16.20 Should assign a symbolic constant, not a literal 94
6.16.21 Should assign one or more symbolic values, not literals . . . 94
6.16.22 Should compare against a symbolic constant, not a literal . . 94
6.16.23 Should compare against one or more symbolic values,

not literals . 94
6.16.24 Should use symbolic constants (one of X | Y | Z) 94
6.16.25 Symbolic values should not be used in relational

comparisons . 95
6.16.26 ‘blah’ is reserved for future use 95
6.16.27 Using #undef 96

Chapter 7 OSPC cross unit checking 97

7.1 Introduction 97
7.2 Using mcl 97
7.2.1 Character significance in identifiers 102
7.3 Call/Definition checking 103
7.4 Using mcl as a librarian 104
7.5 The call hierarchy 104
7.6 Error reporting 104
7.7 Common warnings and their solution 105
7.8 Using make 105
7.9 Summary of options 105

Chapter 8 Common Problems 109

Chapter 9 Collected Syntax 113

9.1 C Language 113
9.2 Precedence of operators 122

© 1997 Knowledge Software Ltd Page vii

Chapter 1

Introduction

Open Systems were designed to enable the portability of applications across platforms. To
achieve this portability both the platforms and the applications must conform to the
standards. The job of ensuring that a platform conforms to standards is the responsibility
of the hardware vendor.

There is no point in having a platform that conforms to standards if the application does not
itself conform to them.OSPC is a set of interrelated tools that check software, written in
the C language, for conformance to thePOSIX, XPG, X-windows andANSI C standards
(amongst others).OSPCis capable of operating at all phases of the creation and execution
of a program; compile, link and runtime. This guide deals with these aspects of standards
checking that do not require the application to be executed, that is, checks that are performed
statically.

This User Guide describes the process of creating applications software that conforms to
Open Systems standards. It also gives a brief overview of each tool in turn, fuller details
can be found in the User Reference manual. It also describes the tools’ common user
interface and how they interact with each other.

The use of standards offer the software developer the opportunity for a significant reduction
in cost and effort when porting applications to different platforms. In practice there are two
main reasons why applications fail to conform to the requirements ofPOSIX and other
standards. The immediate problem is one of know-how and old habits. Once these are
overcome, problems are caused by human oversight and error.

Because of the broad range of services offered it can take some time for developers to think
POSIX. Old, Unix, programmer habits and know-how are easily transferred to aPOSIX

development environment. Programmers cannot be expected to be familiar with all the
intricacies ofPOSIX and how it differs from what they are familiar with. Speaking Unix
with aPOSIXaccent will not solve portability problems, particularly to proprietary platforms
that supportPOSIX. It is necessary to speakPOSIX as a native language and if using Unix
perhaps with a Unix accent. Training can go someway towards ensuring a smoother
transition to aPOSIXonly environment.

Experience over 40 years of software development has shown that it is impossible to produce
any significant applications that do not contain bugs. The same principle holds true for
writing POSIXconforming applications. Mistakes will be made.

So some means of independently and accurately checking conformance could uncover most
of these problems and save a considerable amount of time and money later. Studies have

© 1992-1996 Knowledge Software Ltd Page 1

shown that the later a problem is discovered the more expensive it is to fix. Thus the obvious
time to find these non-conforming constructs is before the release of the software.

From the marketing perspective Open Systems are being demanded by users. Use of an
independent verification tool to check conformance will add weight to any claims of
conformance to Open Systems Standards made by software vendors. From the users
perspective, demanding such verification is a useful means of ensuring vendor compliance
with any Open Systems agreements that they may have.

For those developers considering a move toPOSIX, information provided by a checking tool
can be used to provide an estimate of porting costs for existing applications. By providing
hard information on likely problems, time/cost estimates for porting an application are likely
to be much more accurate than uninformed estimates.

1.1 Background

The OSPC has been derived from the Model Implementation C Checker. A Model
Implementation is a compiler, linker, library and runtime system that follows the exact letter
of a language standard. Thus it can be used to check application programs for strict
conformance to the C standard. There are also other uses. For instance, Model Implemen-
tations have been used to test validation suites which are to be used to check other compilers
for conformance to the Standard (both NISTand BSI have used the C Model Implementation
for this purpose).

Model Implementations have been produced for Pascal and Ada. In March 1989 the British
Standards Institution signed an agreement with Knowledge Software to produce one for C.

1.1.1 How closely does the OSPC follow Standards?

The design aim of a Model Implementation is to follow the exact letter of a language
standard. The ANSI C Standard allows compilers leeway in that many features are left
undefined, implementation defined or unspecified. Thus it is possible for a program that
compiles and runs with one compiler to fail to compile or give different results at runtime.

The source of theOSPC has been cross referenced to the C standard by page and line
number. There is also a suite of test programs that cause all statements in theOSPC to be
executed. Of course theOSPC also passes both the NIST (from Perennial Inc) and BSI
(from PlumHall Inc) C validation suites. All in all a very large amount of effort went into
showing the correctness of the software from which theOSPCwas derived. Users can thus
have a high degree of confidence that the results it gives are correct.

1.1.2 Design aims

The design aims of theOSPCwere as follows:

© 1992-1996 Knowledge Software Ltd Page 2

· Flag all non-strictly conforming uses of C constructs. This includes syntax, con-
straint, undefined, implementation defined, unspecified behaviour and any mini-
mum limits that are exceeded. Checks to be performed at all stages of the software
development cycle.

· Be able to check against a wide range of API specifications.

· Be user configurable. There are very few ‘hard coded’ internal values. Nearly
everything being read from configuration files, which can be changed by the user.

· Informally prove that theOSPC correctly processes the language as described in
the C Standard.

· Analyse the application quickly. Being derived from a Model Implementation
should not be an excuse for low compilation rates.

· All implementation defined and undefined behaviour to be user selectable.

· Software to be portable across a range of architectures. This means that theOSPC
can be ported quickly to a wide range of platforms.

1.2 Why use the Open Systems Portability Checker?

So what does theOSPCdetect that a development compiler, or lint would overlook? The
C standard allows compiler writers considerable leeway in the handling of many constructs.
The reason the C standards committee (X3J11) permitted this leeway was that many
compilers already silently handled these constructs one way or another and the desire was
to codify common existing practice. Thus although a compiler may pass a C validation
suite it may still leave, and is perfectly entitled to leave, many constructs unflagged. By
specifying the behaviour for many combinations of constructs to be undefined implementors
have been given freedom to decide what to do. This freedom means that C programs can
behave differently with different C compilers, even on the same machine. There are no
requirements on compilers to flag occurrences of these undefined constructs. TheOSPC
was designed to detect all non-strictly conforming behaviour in C programs. It detects and
flags all constraint errors, implementation defined, undefined, unspecified behaviour and
exceeding minimum limits; at compile, link and runtime. The following points highlight
the differences:

OSPC

· Check strict-conformance to the C standard. Pick up standard requirements missed
by the development compiler.

· Check use of system service interface. Perform symbolic checks on parameters and
return values to ensure that the defined interface is being used.

© 1992-1996 Knowledge Software Ltd Page 3

· Can be tailored to mimic a variety of platforms and the components from which they
are created.

· Detect: Undefined, Implementation defined and unspecified behavior as well as
constraint errors.

· Cross translation unit checks to verify interface correctness.

· Support for multiple architectures.

Development compiler or lint:

· May not be ANSI conforming.

· Likely to be silent on constructs the exhibit undefined, implementation defined or
unspecified behaviours.

· May ‘hide’ the implementation defined features from its users.

· Unlikely to check across translation units.

· Only likely to support a single machine architecture.

1.2.1 Support for multiple architectures

TheOSPCis not tied to any computer architecture. It can be configured to emulate various
architectures. This means that it can be used to check software for portability to other
systems. The user can configure the static checking component tools of theOSPCto match:

· The development compiler

· A variety of cpus

· The commonly used operating systems

· Combinations of various standards

1.3 How to use this guide

This guide is aimed at those users who want a quick introduction on how to use theOSPC
for checking their software. More detailed information can be found in the User Reference
Manual.

Users of theOSPC would not normally need an introduction to the C language or the
edit/compile/run cycle of program development and none is given.

© 1992-1996 Knowledge Software Ltd Page 4

Most people try the software first. If they cannot get it to work they read the manual. The
mode of operation of theOSPCwill be familiar to all developers and so this approach will
work to some degree. Also the on-line help enables many questions to be answered.
However, TheOSPC is a sophisticated piece of software. To get the best from it some
background knowledge is required. It is not recommended that you read this guide from
cover to cover, before doing anything (other than falling asleep). Rather, it is suggested
that you try the software while reading its documentation.

The chapter entitled Getting Started (it follows this one) is a good place to begin.

1.4 Contents of Guide

The following gives a more detailed look at what the User’s Guide contains:

Chapter 2. Getting started. Using theOSPC to find instances of non-conforming C
constructs in programs.

Chapter 3. Overview. Provides a description of the tools and how they work together.

Chapter 4. User interface and configuration. The components of theOSPC share a
common interface. The configuration options are also described here.

Chapter 5. OSPC source checking.A guide to using theOSPCon the source code of
the software. It also describes the command line options.

Chapter 6. OSPC cross unit checking.Aguide to using theOSPCto check dependencies
between compiled translation units. It also describes the command line options.

Chapter 7. Common problems. Asks the questions most commonly voiced about using
theOSPCand provides answers.

Chapter 8. Syntax of the C language.

Index

1.5 Related documents

Installation guide, User Reference manual

ISO C Standard. ISO/IEC 9899:1990 (ANSI C Standard. X3.159-1989)

POSIX.1 ISO/IEC 9945-1 (system API)

Unix System V Release 4 Programmer’s Guide: ANSI C and Programming Support Tools

© 1992-1996 Knowledge Software Ltd Page 5

C Language Interfaces, AT&T Data Systems Group, 1989. ISBN 0-13-109661-3

Go Solo, go solo with the single unix specification. ISBN 0-13-439381-3

1.6 Conventions

References to the Standard, when a language is being discussed, should be taken to mean
ISO/IEC 9899:1990.

The typographical conventions used follow those given in thePOSIXstandards.

Type of entry Example

C-Language Data Type short int

C-Language Error Number [EINVAL]

C-Language Function printf()

C-Language Argument stream

C-Language Global External errno

C-Language Header <stdio.h>

C-Language Keyword #undef

Constants MAX_UCHAR

Environment Variables MCEDITOR

Example Input mcc myprog

Example Output Hello world!

© 1992-1996 Knowledge Software Ltd Page 6

Type of entry Example

File Name /usr/include

Special Character <new-line>

Utility Name mcc

Utility Option -CFG

Parameter [<platform type>]

1.7 Reporting problems

Problems can be reported via electronic of paper mail. A bug report form can be found in
the distributed software package indoc/prob.txt .

Our electronic address is:

support@knosof.co.uk

Up todate information can also be found on our web site at www.knosof.co.uk

Suggestions for improvement are also welcome.

Note: These tools check the requirements given in standards documents. If you are unhappy
with these requirements you should address your complaints to the relevant committee.
Don’t shoot the messenger.

© 1992-1996 Knowledge Software Ltd Page 7

© 1992-1996 Knowledge Software Ltd Page 8

Chapter 2

Getting started

2.1 Introduction

This chapter will take you through the process of checking several applications for
conformance to various standards, usingOSPC. We will take existing programs that
contain a number of non conforming and non portable constructs and go through the process
of detecting and removing them. Because of the wide range of services provided by different
platforms the range of warnings generated byOSPCcan be very large. The use of platform
profiles is the key to controlling this diversity. The description on how to use the tools will
therefore go hand in hand with the concept of platform profiles.

We assume that theOSPChas been correctly installed on your system. This manual deals
with the static portion ofOSPC. That is, those checks that can be performed without having
to run the application. Another set of manuals deals with the checking of the runtime
characteristics of an application. See below for information on checking for correct
installation.

We will go through the steps:

· Detecting and removing constructs flagged in the source code.

· Detecting and removing constructs flagged at cross unit checking time.

· Showing how platform profiles affect the behaviour of theOSPCtools.

· Showing howOSPCcan be integrated into an existing development environment.

2.2 Checking the installation

The following procedure will check that theOSPChas been correctly installed.

Issue the following command (at the Unix shell prompt):

$ mcc

this should cause themcchelp screen to appear, and issuing the command:

$ mcl

© 1992-1997 Knowledge Software Ltd Page 9

should cause themcl help text to appear.

In each case the help text should include half a dozen, or more options. If only a two line
summary of the command line syntax appears, then go back to the installation notes.

OSPC is licensed on a per seat basis. Before running each tool checks to ensure that no
more than the permitted number of users are already running. If the maximum number of
users has been reached a message will be displayed and the tool aborted. The user will then
have to wait for a slot to become free.

Included with the software is a directory of example programs. The directory is called
example and contains various subdirectories. Before going through this example it is
recommended that a temporary working directory be made and the contents of
checker/example copied into it.

2.3 Example 1

A directory listing should reveal the files:Makefile, main.c, util.c,
main.via and.mccrc .

/*
main.c, 16 Jan 91 Main unit of program for generating

prime numbers. Uses Euclid’s method.
Copyright (c) 1991, Knowledge Software Ltd.

*/
#include <stdio.h>

#define MAX_PRIMES 300
long primes[MAX_PRIMES];
long Calculate_primes();
void printf_results(long);

void main(void)
{
long num_primes_found;
printf(“Calculate the primes that occur in the first %d numbers\n”,

MAX_PRIMES);
num_primes_found = Calculate_primes(MAX_PRIMES);
printf_results(num_primes_found);
}

/*
utils.c, 16 Jan 91 Utility routines called from main.c

to calculate prime numbers
*/
extern int primes[];

int Calculate_primes(int max_primes)
{
unsigned int primes_found_m1 = 1,

num_to_try = 5;
/*

Set up the first two
*/
primes[0] = 2;
primes[1] = 3;

© 1992-1997 Knowledge Software Ltd Page 10

while (num_to_try < max_primes)
{

int loop_index;
for (loop_index = 0; loop_index <= primes_found_m1;

loop_index++)
if ((num_to_try % primes[loop_index]) == 0)

/*
if the remainder is zero then this number is not prime

*/
{
num_to_try += 2;
break;
}

if (loop_index > primes_found_m1)
{
/* found one */
primes_found_m1++;
primes[primes_found_m1] = num_to_try;

/*
Only odd numbers (after 2) are prime.

*/
num_to_try += 2;
}

}
/*

return how many we found
*/
return primes_found_m1+1;
}

void printf_results(int primes_found)
{
/* print out the prime numbers that have been found */
signed char loop_index;

for (loop_index = 0; loop_index <= primes_found; loop_index++)
printf(“%d is prime\n”, primes[loop_index]);

}

In any large development projectmake would normally be used. But we shall start off
describing how each component, ofOSPC, operates before fully integrating them. The
first task is to compilemain.c andutil.c . To do this type:

mcc main

(the .c need not be given) and:

mcc util

More than one file can be given on the command line:

mcc main util

would have the same effect.

Several things will have happened. Various warnings appear on the screen and two new
files will have been created,main.kic andutil.kic . Since only warnings occurred

© 1992-1997 Knowledge Software Ltd Page 11

it would be possible to go on to check the units for interface consistency. However, it is
probably wiser to remove of the warnings generated bymcc first.

2.3.1 Removing the mcc problems

If there are only a few messages it is usually easy to remember which line they occurred
on. Larger numbers of messages can be dealt with by creating a log file:

mcc main -log main.log

in this case the option-LOG+ would have had the same effect (since the name chosen was
the same as the source file being checked). To create listing file (which will include all lines
in the source, not just those flagged) type:

mcc main -l+

or, of course, by using the Unix redirection facility:

mcc main > main.output

Looking at the generated warnings we see that there are two warnings concerningmain.c :

1 The functionprintf_resultsis the same, within six characters as the functionprintf.
The solution here is simple. Renameprintf_resultsto print_results.

2 The second warning concerns the functionmain. Since nothing is passed to this
function and nothing returned the user has defined it appropriately. However,main
is a special function. The Standard specifies that it can only be defined in one of two
ways. In this case the appropriate one isint main(void)(since main does in fact return
a value to its caller).

Compilingutils.c also gives the warning aboutprintf_resultsandprintf.

To find out where about in the standard these restriction are described, turn on standard
references (using the-REF+ option).

mcc main -REF+

In the case of the first problem you will be told that section 5.1.2.2 of the ISO C Standard
is the place to look.

2.4 Using mcl

In order to perform cross unit checking we need to link the two translated units together.
The simplest method is to type:

© 1992-1997 Knowledge Software Ltd Page 12

mcl main utils -Lib+

or (if the file main.via contains the linesmain , utils and-Lib+):

mcl -VIA main.via

Once it is runningmcl will report on its progress, generate some warnings and produce a
file calledmain.klc (the first filename on the command line is used as the basis of the
output file, unless overriden with the-Output option).

The option-Lib+ tellsmcl to use the default library when checking the unit interfaces. It
is also possible to specify the pathname of a library .klc file at this point. However, this
operation is so common that an option was created to carry it out. Our program contains a
call to theprintf library function (which has not been defined in the calling translation unit).
It is contained in the C library stdio.

2.4.1 Removing the mcl warnings

mcl operates on a translated version of the source code. Its main checking role involves
comparing externals of the same name, declared in different files, for compatibility. Its
output takes the form of a name, followed by the types involved and a message describing
the problem and the names of the files containing declarations/definitions of those names.
There is no line number information (this information could, in theory, be made available,
but it would significantly increase the size of the .kic files and the problem of multiple
declarations of the same name in the same file would have to be addressed).

In the case of this example there are four warnings generated bymcl.

The first is caused because an object,primes, has been declared with different types in the
two source files.

The other warnings are telling us that a function declaration in one unit is not compatible
with a function definition in another unit (the function types are not compatible).

The programmer obviously forgot what the parameter and return types were when coding
up these units. In one file a function was declared usingint, but long was used for the
definitions in the other file.

The solution is to make the types of the declaration and definition agree, in both files. Here
it would be possible to use the typesint or long for the parameters and return types. The
only requirement is that the same choice has to be made in both files.

For arguments sake, lets editmain.c andutils.c to useints throughout. Having made
this change we now have to recompile the two units, usingmcc. This time, when they are
processed usingmcl there are no warnings generated.

© 1992-1997 Knowledge Software Ltd Page 13

2.5 Platform profiles

The secret of getting the best out of theOSPC tool set lies in making full use of platform
profiles. Platform profiles offer two benefits:

1 They provide a convenient means of organising the attributes of different platforms,
so users need not concern themselves with details and,

2 They provide a method of reducing the number of warnings generated when a
specific translation unit is processed (in its raw modeOSPCcan flag a large number
of potential portability problems).

Putting in the effort to make software portable to all platforms can be wasted effort.
Normally theOSPC complains about everything that could cause portability problems.
However complaining about all portability problems can result in a large quantity of output.
Platform profiles provide a simple way of reducing the quantity of output, thus highlighting
the essential information. The user selects the source and target platforms before running
the tools. TheOSPCuses this information to select which warnings are relevant for the
portation being undertaken. The reduction in the number of warnings generated is brought
about because different platforms often share many characteristics with each other. Thus,
knowing that the software being processed already runs on one platform (the source) and
knowing the identity of the target platform, it is possible to filter out warnings about those
constructs that are common to both. The idea being that if the construct already works on
the source then it is highly likely that it will also work on the target platform.

Profiles come in two types - platform and component profiles (they may be represented in
text or binary files). Platform profiles are in fact built up from component profiles. The
component profiles contain, as the name suggests, information about the components of a
platform (ie cpu, compiler, OS, standards, etc). In the following examples we shall start
off by using existing platform profiles and seeing what effect different profiles have on the
warnings generated. We shall then go onto to show how platform profiles can be extended
to include additional standards; for instance a sun4 profile modified by a X11 subprofile
instead of Sun View. A full description of the information held in platform profiles and its
format can be found in the User Reference Manual.

2.6 Example 2

In the first example the affects of using platform profiles was skipped. Here we shall
consider an example where changes to the platform profiles can have a dramatic effect on
the warnings generated.

/*
libfun.c, 25 May 91
Copyright (c) 1991, Knowledge Software Ltd.

*/
#include <stdio.h>

© 1992-1997 Knowledge Software Ltd Page 14

char gac[20];
char *gpc;
int *gpi;

int total; /* common enough name */
#define COUNT_MAX 33; /* looks ok */

char *p1, *p2;

extern int loop_counter_a,
loop_counter_b; /* first 13 characters the same */

void func(void)
{

bcopy(p1, p2, len); /* platform specific memory copy routine */

gpi = (int *)gac; /* potentially different alignments */

gpc = (char *)&loop_counter_a; /* byte sex dependency */

gpc = ’\a’; / making use of ISO C feature */

total >>= 1;

/* ... */

The above program contains several constructs that may, or may nor give rise to portability
problems. An cursory examination of the source would suggest that this software was
written for a machine with few alignment restrictions and a C compiler that was closer to
the ISO C standard than K&R. If the target platform has the same attributes there should
be few porting problems.

However, if the target platform has strict alignment requirements on the addresses of objects,
a dereference of the address contained ingpi (after it had been assigned a value) could well
result in the cpu raising an alignment fault. The problems cause by the subsequent
assignment are likely to be more subtle. The address of an object of typeint is being taken.
Now if both the source and target processors have the same byte sex there will be no
problems. However, if they have opposite byte sex any access to the storage by derefer-
encinggpcwill result in a different part of theint object being used than expected. In the
final assignment use is being made of an ISO C specific feature. The character constant
’\a’ is replaced by the alert character (beep) under ISO. On pre-ISO compilers the escape
sequence has no special meaning and is likely to have the same effect as the character
constant’a’ .

This code is also relying on characteristics of the host library (the call tobcopy), linker
(number of significant characters in external identifiers) and cpu (is arithmetic right shift
signed or unsigned?). Use is also being made of identifiers that are reserved for future use
by the C standard and the POSIX.1 standard (use themcc option -REF to find out where
the standards reserve these names).

To see what effects the source and target platform profile have on the warnings generated
for this file try the following:

mcc libfunc -src unknown -tgt unknown

© 1992-1997 Knowledge Software Ltd Page 15

mcc libfunc -src unknown -tgt cabstract

mcc libfunc -src cabstract -tgt posabstract

mcc libfunc -src unknown -tgt sun4

mcc libfunc -src sun4 -tgt 88k

mcc libfunc -src dos -tgt sun4

In practice users are unlikely to use such a wide range of source/target platforms. A local
configuration file (.mccrc) can be created to hold frequently used command line options.

2.7 Example 3

Change to the directoryexample/example1 . The filegetpswd.c contains a function
whose job it is to obtain a password from the user, typed onSTDIN. To stop a casual
bystander seeing the characters typed, the function switches off echo while the password is
being input and then re-enables it.

The function does not conform to the published POSIX and C API’s in a number of places.

1: /* getpswd.c, 26 Mar 96 */
2:
3:/*
4: * Taken from
5: * POSIX programmers guide by Donald Lewine, ISBN 0-937175-73-0
6: */
7:
8:#include <errno.h>
9:#include <termios.h>

10:#include <stdio.h>
11:#include <sys/types.h>
12:#include <unistd.h>
13:
14:int getpswd(char *buff, unsigned size)
15:{
16:struct termios attr;
17:int n;
18:
19:if (printf(“Password: ”) == -1)
20: return -1;
21:if (fflush(stdout) == -1)
22: return -1;
23:
24:/*
25: * Get attributes and turn off echo
26: */
27:if (tcgetattr(STDIN_FILENO, &attr) != 0)
28: return -1;
29:
30:attr.c_lflag &= ~(0x10);
31:
32:if (tcsetattr(STDIN_FILENO, 2, &attr) != 0)
33: return -1;
34:

© 1992-1997 Knowledge Software Ltd Page 16

35:/*
36: * Read the password type on stdin
37: */
38:errno=0;
39:n=read(STDIN_FILENO, buff, size);
40:if (errno != 0)
41: return -1;
42:/*
43: * EBADF not a valid file descriptor
44: * EAGAIN The O_NONBLOCK flag is set and the process cannot be

delayed
45: * EINTR operation was interrupted by a signal
46: * EIO background job is attempting to read from its controlling

terminal
47: */
48:
49:/*
50: * Now reenable the echo
51: */
52:attr.c_lflag |= 0x10;
53:
54:if (tcsetattr(STDIN_FILENO, 0, &attr) != 0)
55: return -1;
56:
57:return n;
58:}

Line 19. “The printf function returns the number of characters transmitted, or a negative
value if an output error occurred.” ISO C Clause 7.9.6.3. As written the code is not testing
the negative property, but for a particular instance of a negative value. The correct test is
for less than zero.

Line 21. “The fflush function returns EOF if a write error occurs, otherwise zero.” ISO C
Clause 7.9.5.2. The code assumes a particular value for theEOF macro,-1. There is no
requirement that theEOFmacro have this value on all implementations.

Line 30. “Values of thec_lflag field, shown in Table 7-4, describe the control functions
and are composed of the bitwise inclusive OR of the masks shown ...” ISO POSIX Clause
7.1.2.5. The code assumes that theECHO macro has the value0x10. There is no such
requirement in the API.

Line 32. ISO POSIX Clause 7.2.1.2 defines actions when particular symbolic values are
passed as the second parameter. The code assumes that the macroTCSAFLUSHhas the
value2.

Line 40. There is no requirement in the POSIX API that return codes be checked. When
running in API mode only no check is made that errno is tested for.

Line 52. Re line 30. The macroECHOshould be used.

Line 54. Re line 32. Except in this case the macroTCSANOWis intended.

If the source code is modified to take into account the API interface violations described
above we get the code shown below.

© 1992-1997 Knowledge Software Ltd Page 17

/* getpswd.c, 26 Mar 96 */
/*

* Taken from
* POSIX programmers guide by Donald Lewine, ISBN 0-937175-73-0
*/

#include <errno.h>
#include <termios.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int getpswd(char *buff, unsigned size)
{
struct termios attr;
int n;

if (printf(Password: “) 0)
return -1;

if (fflush(stdout) == EOF)
return -1;

/*
* Get attributes and turn off echo
*/

if (tcgetattr(STDIN_FILENO, &attr) != 0)
return -1;

attr.c_lflag &= ~(ECHO);

if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &attr) != 0)
return -1;

/*
* Read the password type on stdin
*/

errno=0;
n=read(STDIN_FILENO, buff, size);
if (errno != 0)

return -1;
/*

* EBADF not a valid file descriptor
* EAGAIN The O_NONBLOCK flag is set and the process cannot be

delayed
* EINTR operation was interrupted by a signal
* EIO background job is attempting to read from its controlling

terminal
*/

/*
* Now reenable the echo
*/

attr.c_lflag |= ECHO;

if (tcsetattr(STDIN_FILENO, TCSANOW, &attr) != 0)
return -1;

return n;
}

© 1992-1997 Knowledge Software Ltd Page 18

2.8 Integrating OSPC into the existing environment

The components ofOSPC can be run as stand alone tools. However, most applications
packages contain a large volume of source spread over many directories. Also this source
can often be built in one of several ways (usually to support different configurations). To
useOSPCin this environment means that it is necessary to be able to make use of existing
development tools, in particular make files.

2.8.1 Example 1 revisited

Change back to the working directory that contains this example and typemake. The files
will be compiled and linked using the host compiler and linker.

Remove the two filesmain.o andutil.o , then type:

make CC=ccc

cccis a script that causes both the development compiler andmcc to invoked on the source
files. If a link is neededmcl will be invoked.

The command line optionCC=ccc overrides the value given toCC (an environment
variable) inside the make file. If the lineCC=cc, in the make file, was changed toCC=ccc ,
this command line option would not be necessary.

If mcc is not invoked on every file that is compiled, by the host compiler, there are several
possibilities:

1 Within the body of the make file any occurrence ofccshould be changed to$(CC) .
The line

CC = cc

should appear somewhere within the file. It is possible that this line does not already
exist in the make file. In this case it can simply be added near the start of the file,
with the other macro definitions.

2 The lines:

.c.o :
$(CC) $(CFLAGS) $<

should be added, if they don’t already exist, to the make file (note that the second
line starts with a tab character, not multiple space characters). They describe the
default rules for creating a .o file from a .c file. Note that on some platforms the
default rule for invokingccalso define some macros via the-D option.

© 1992-1997 Knowledge Software Ltd Page 19

3 If use is made ofar to build libraries the line:

AR = ar

has to be changed to:

AR = arr

It is possible that this line does not already exist in the make file. In this case it can
simply be added near the start of the file, with the other macro definitions. Similarly
within the body of the make file any occurrence ofar should be changed to$(AR) .
This will cause libraries of .kic files to be created.

By having a make file that explicitly contains the rules for creating a .o file from a .c file
the user at least knows what is going on. Sometimes the inbuilt default rules contain
non-portable options tocc, whichccccannot understand. By providing an explicit default
rule this problem is avoided. In some cases users may not want to change the value of the
CCmacro to beccc. In this casemake can be invoked with the command line option, as
was done above.

2.9 Using platform profiles

Platform profiles are not designed to provide the definitive answer in terms of how software
should be targeted to a given platform. The information given in a platform profile provides
the core information. Users may want to modify, from time to time, some of the settings.
The .rc file capability is provided to allow this modification to be carried out on a project
basis and command line options allow option settings to be changed on a per instance basis.
The chapter on the user interface and configuration describes how local configuration files
work.

Options are read from many different files and it can sometimes be difficult to work out
where a particular option is being modified. Two options are provided to aid debugging of
configuration files;-TRACE options and-TRACE profiles . Specifying either of
these options causes the contents of the configuration file to be sent tostdout , as it is
being read in. Option tracing switches output on for all options that are read from files,
whist profile tracing only displays the options defined in profiles.

All of these configuration files can sometimes make it difficult to work out the option values
finally used byOSPC. Help is at hand in the form of the help text. Alongside the description
of each command is the current setting of that option.

© 1992-1997 Knowledge Software Ltd Page 20

Chapter 3

Creating portable software

3.1 Introduction

This chapter provides an overview of the process of creating portable applications software.
It discusses the ideas behind portable software and looks at the management and technical
issues involved. It also gives an overview of the tools provided withinOSPCfor detecting
non-conforming constructs inC programs.

3.2 What does portability mean?

Portability means different things to different people. Standards define the term ‘strictly
conforming’. Software that strictly conforms to the requirements of theC and POSIX

standards is maximally portable with regard to those standards. But is such software
maximally portable with respect to existing hardware platforms? Probably not. The reason
is that there are many platforms that do not conform to thePOSIXstandard, either through
intent (or lack of intent) or oversight. To be maximally portable an application should not
only keep within defined standards, but also only use those features that are known to be
widely available.

Do developers want to create maximally portable software? It sounds like a good idea.
What are the drawbacks? Mainly time and money. Creating software that is likely to run
on any reasonably compliant platform will take time and effort. Thus developers need to
take a look at the costs of creating maximally portable software verses the likely savings to
be achieved. It may well turn out to be more cost effective to create software that is portable
to a range of platforms, rather than all platforms.

The tools described here are based on the concept of platform profiles. Platform profiles
were introduced to allow developers to specify the platform(s) they would like portability
to. By knowing the target platform it is possible to filter out warnings about those constructs
that are not of interest for that platform. Knowing the source platform (where the software
is known to run correctly, or at least assumed to run correctly) it is possible to reduce further
the number of ‘uninteresting’ warnings generated. Platform profiles also act as a method
for encapsulating the configuration information about various platforms. Once a platform
profile has been created users need no longer concern themselves with the inner details of
particular platforms.

Creating a strictly conformingC translation unit (what theC Standard calls a stand alone
text file that can be compiled) will probably be tougher than you think. TheC standard
contains a large number of constructs whose use results in undefined or implementation

© 1992-1996 Knowledge Software Ltd Page 21

defined behaviour. Existing compilers silently process these constructs. Most of the time
this processing results in programs that behave as expected. However, every now and then
unexpected behaviour occurs; resulting in strange bugs that can take a long time to track
down.

C is also a more complex language than most people think. There are many subtleties in
its definition. The ANSIC (the standard was written by the ANSI committee X3J11 and
was subsequently adopted as an ISO standard, ISO/IEC 9899:1992) committees’ decision
not to break existing code has led to many twists and turns. This complexity is not visible
to most users. The idiosyncracies of the compiler in use are probably well known and
developers have adjusted to its view of the world. TheOSPC is different. It is very fussy.
It doesn’t just complain about what it is required to complain about. It will complain about
the complete set of constructs that theC Standard allows to be complained about, plus those
contained in any other standards that are referenced.

3.2.1 Don’t compilers check?

The development compiler is only likely to check for constraint and syntax errors, since it
is these constructs that a conforming implementation is required to detect (and must detect
in order for a compiler to validate). Also the compiler’s job is to check the language as
defined in theC standard, it is not interested in checking the requirements contained in other
standards.

One of the principles behind the drafting of theC standard was that existing code should
not be broken by wording in the standard. This meant that in many cases the behaviour was
left undefined, implementation defined or unspecified. By not specifying what had to be
done, compiler implementors were free to make their own decisions. Thus preserving the
correctness of existing, old code. So in general, compilers are silent on those constructs
whose behaviour may vary across implementations. This freedom means thatC programs
can behave differently with different ISO validated C compilers, even on the same machine.
There are no requirements on compilers to flag occurrences of these non constraint/syntax
errors.

The C standard committee also recognised that compiler vendors would have to rely on
existing tools to link separately compiled units together. Since existing linkers were
unlikely to check for external variables and functions for inconsistencies between modules
it was felt that theC standard should not mandate such checks.

Runtime checking is not considered to be in the spirit ofC programming. Thus compilers
do not generate code to check that pointers are within bounds, that the correct number of
parameters are passed or check that any of the runtime conditions are violated.

3.3 What to check

Having shown the benefits of conforming toPOSIXand that the best way of achieving this
is to use some form of checking tool we now have to investigate what constructs ought to

© 1992-1996 Knowledge Software Ltd Page 22

be flagged and why. There are two main sources of information on constructs that ought
to be checked to achieve applications portability:

1 The text of standards documents. Here we are interested in applications written in
the C language. So the relevant standards are theC language standard and the C
language bindings provided by thePOSIX.1(ISO 9945-1) standard (the other POSIX
documents are still drafts and have yet to achieve formal standards status).

2 Practical experience. The sources for this information tend to be first hand experi-
ences and conversations with developers on problems that they have encountered.
Books on software portability are starting to appear. But on the whole these tend to
give general guidelines rather than cover specific cases. One problem with specific
cases is that they go out of date. As compilers and O/S’s evolve problems disappear
and new ones appear.

The core of thePOSIX checker is driven by the requirements given in theC andPOSIX.1

standards. Messages are categorised in the same manner as the standards documents. Also
any construct which is not strictly conforming is flagged. Provided with these core checking
abilities the user can then provide configuration information (done via source and target
profiles, discussed later) to switch off any messages that are not of interest.

Thus no justification, other than appearing in a standards document, is given for flagging
these core constructs. Those developers familiar with the standards process will know that
the contents of standards are sometimes driven by immediate political needs rather than
technical merit. Attempting to weed out the political from the technical issues was not
considered to be worthwhile. Matters are greatly simplified (from our point of view) by
simply handling all constructs.

The necessity for checks based on practical experience occurs because we live in an
imperfect world. Operating systems and compilers do not fully conform to standards and
contain bugs. Sometimes these bugs are actually features, they are there for compatibility
with previous versions of the software. The justification for flagging these constructs goes
along the lines of “this construct is not supported/behaves differently on the xyz platform”.
From this observation we draw the conclusion that truly portable applications have to be
written using a subset of the facilities and services described in standards documents.

3.3.1 Standards conformance

The POSIX andC standards define two types of conformance, 1) implementation confor-
mance (ie the OS) and 2) application (or source code) conformance. This tool set checks
the latter.

Application conformance is broken down into various categories. The classification of
these categories varies slightly between the two standards.

© 1992-1996 Knowledge Software Ltd Page 23

3.3.2 POSIX specifics

POSIXitself is not specific to theC language. However, it does have aCbinding (ISO 9945-1,
currently being revised into a language independent and language dependent standards).
This binding specifies an interface to the environment, but surprisingly there are no
requirements inPOSIX.1for theC source code to conform to theC standard. However, from
the portability perspective any software that conforms to the C standard should be portable
acrossC compilers running in aPOSIX environment. So here we will be considering the
POSIXandC standards as one.

A strictly conformingPOSIX.1program does not rely on any construct whose behaviour is
not fully defined, thus it has the greatest portability. A conformingPOSIX.1application may
only use facilities described in the standard, or other accredited standards. However, since
the behaviour of some of those facilities may vary across implementations such an
application may need to be modified to run on different platforms.

ThePOSIX.1standard also defines <National Body> conforming applications and conform-
ing applications using extensions. It is expected that applications conforming to these
standards will have weaker portability criteria and are not considered further here.

The POSIX standards are very new. A consequence of this, is that the moment there are
constructs for which it is uncertain (at least to the author) which category of behaviour they
cause. As time passes the user community will iron out the problems caused by inconsis-
tencies or missing wording in these documents.

3.3.3 C specifics

The C standard defines terms for a strictly conforming and conforming programs. From
the perspective of applications software the C standard defines a language. This language
has a particular view of the world and other standards must use this when defining aC

binding to a particular set of services.

TheC standard is all encompassing in that all constructs can be categorised. Over the last
few years there has been a considerable debate about the status of variousC constructs. This
has resulted a feeling that any remaining poorly defined constructs are likely to be obscure.
There is an active program of documenting answers to interpretation questions raised by
users of theC standard.

3.3.4 C/POSIX.1 differences

The major difference between thePOSIX.1 and C standards occurs at runtime.POSIX

specifies a much larger set of support functions. Basically it provides an interface to the
host operating system, whereas the C standard provides library functions independent of
the host OS. The topic of runtime conformance checking is dealt with in the runtime
documentation.

© 1992-1996 Knowledge Software Ltd Page 24

The rules and regulations governing the creation of a runable program are specified to be
those given in the relevant language binding. In the case of theC language binding some of
the minimum limits given in theC standard are increased, i.e., number of characters
considered significant in an external identifier.

3.4 Components of the OSPC

Creating an executable program fromC source code requires four components: 1) compiler,
2) linker, 3) library and 4) runtime system.

3.4.1 The Compiler

It was recognised at an early stage that most existingC programs are a long way from being
strictly conforming. The user interface of theOSPCwas designed to smooth the transition
from K&R and common usage C to conforming ISO C. Not only is it possible to tailor the
severity of every error message but implementation defined features are user selectable.
This tailoring enables users to convert their source code in an incremental fashion. Thus
the work load can be spread over a period of time. It is also possible to achieve results
quickly, rather than having to wait until all the work is complete.

The compiler has no hardwired internal limits and will handle any large program, given
sufficient memory.

3.4.2 The Cross unit checker

The OSPC cross unit checker (linker) was tailor written for linkingC programs. Most
linkers perform very little checking across translation units. They are usually restricted to
complaining about missing symbols.

TheOSPCcross unit checker performs full type checking across C translation units, i.e.,
it checks that the same identifier is declared with compatible types in every file in which it
is referenced.

3.4.3 The runtime interface checker

This portion ofOSPCis provided in the dynamic checking package, separate from the static
checking portion along with the runtime system. TheOSPC supplies the functionality
required by thePOSIX andC standards by providing a set of routines that interface to the
host libraries. Following the design aims of the previous phases these interface routines
also give warnings on the use of any undefined, implementation defined or unspecified
behaviour that occurs. The interface routines are called prior to the call to the actual system
service routine.

© 1992-1996 Knowledge Software Ltd Page 25

3.4.4 The Runtime system

This portion ofOSPC is also provided with the runtime interface checker and is packaged
separately from the static checking portion. TheOSPC runtime system executes the code
generated by the compiler and performs checks on the correctness of operations. For
instance, checking that memory accesses via pointers do not result in stray memory
references; warning when casts result in loss of information and checking that function
parameters are correctly accessed.

3.5 When constructs are flagged

Ideally it would be possible to flag every construct that should be flagged, by doing a static
analysis of the application source. In practice this is not possible. In order to detect all
possible occurrences of non-conforming standards constructs it is necessary to run three
different, though inter-related tools.

In terms of the number of different possible non-conforming constructsmcc detects the
lion’s share. The tool with the least number of different messages ismcl, andmceis likely
to flag the same construct many times. The following is a rough guide as to what gets
flagged by which component tool:

mcc Operates on a single source file. Flags syntax and constraint errors.
Also flags those undefined, implementation defined behaviours, un-
specified behaviour and exceeding minimum limits that do not require
knowledge of the values of objects (unless constant expressions are
used).

mcl Operates on one or more translation units that have been processed by
mcc. Detects undefined behaviour resulting from inconsistent decla-
rations and definitions across multiple translation units.

mce Operates on the output file generated bymcl. Detects undefined and
implementation defined behaviour occurring at runtime. This tool can
be found in the dynamic portion of theOSPC tool set.

A strictly conforming program is one that is capable of being processed bymcc, mcland
mcewithout any warning messages being issued.

3.6 Becoming conformant in increments

Taking an existing program and making it strictly conforming is likely to require some
effort.

The following series of actions will probably maximise the use of resources:

© 1992-1996 Knowledge Software Ltd Page 26

1 Usemcc to process all the source files making up a program. Providing no errors
are reported files suitable for processing bymcl will be created.

2 The warnings generated as a result of (1) should be examined. Those that are
considered as being unimportant, for the time being, can be ignored. The constructs
causing the other warnings should be corrected.

3 Process (cross unit check) all the files, created bymcc, making up the program.

4 Any warnings generated as a result of (3) should be corrected. The path (1), (2) and
(3) should then be repeated and so on untilmcl does not generate any warnings.

5 Execute the program usingmce. Correct any constructs that are flagged.

6 Make sure that any construct modified as a result of the previous phase do not cause
mccor mcl to flag additional warnings.

During the early stages of processing it might also be worthwhile to switch off some of the
less important warnings. This can help reduce the volume of output and create a more
manageable task.

3.7 Conforming to an API

API’s (Application Program Interface) have become the method by which vendors define
the software interface to their products. The product could be a piece of hardware, a third
party library or even an operating system.

Users of applications often need to know which API’s an application relies on (for instance
when purchasing hardware and software separately). Managers of development teams
would probably like to know that only the defined API is being used and that the interface
rules laid down in the specification are being followed (to reduce the likelihood of their
product becoming tied to a particular version, or vendors implementation of an API).

RunningOSPCwith the-API option switched on, will produce a listing of the API’s used
by the application and a summary of API specification violations.

3.7.1 What might an API define?

Information can be passed through an interface via function calls or external variables. To
hide implementation details symbolic names (macros) are often used to represent special
numeric values and structures are used to hold a collection of variables in one object.

The names of these functions, objects, macros and types are defined in one or more header
files, to be included within the developers source code.

© 1992-1996 Knowledge Software Ltd Page 27

To be of use the API must define more than the C syntax. It must define the properties of
these names. For instance the externalxyz represents a status flag and can have any of the
values given by the macrosA, B or C.

3.7.2 Which API’s are used?

Two things need to be done to answer this question:

1 Scan the applications source looking for all uses of external identifiers.

2 A database of API’s and the identifiers they define against which identifiers used in
an application can be matched needs to be available.

All references to identifiers are matched against the contents of the API database, or other
parts of the application (one unit may refer to an identifier defined in another unit, not an
API). A match against an identifier contained in an API flags that API as being used (cases
where different API’s define the same identifier are rare and can usually be resolved by
looking at the context, ie included headers and the use made of the identifier).

Identifiers that are not contained in another unit of the application or the API database are
regarded as referring to an unknown API (they could equally be referring to vendor
extensions or a particular API).

3.7.2.1 Optional components

An API is sometimes broken down into core and optional components. For instance the
ODBC has a core and two optional levels; the real time portion of POSIX has 16 optional
components. The availability of these components can be tested for using feature test
macros within the application source code.

To be useful, any report of API usage has to list those optional components of an API that
are used by the application.

3.7.3 Are the interface conventions obeyed?

It is no good making use of the facilities provided by an API if the interface conventions
are not followed. The whole purpose of an API is to isolate implementation details from
the application. An applications that does not follow the specified interface rules is likely
to have problems when using a new version of a library implementing the API, or the
application is moved to a different platform.

So as well as finding out which identifiers are used, it is also necessary to check that they
are used correctly.

© 1992-1996 Knowledge Software Ltd Page 28

3.7.4 Interface requirements specified in APIs

API’s specify a number of different requirements for correct usage. Commonly seen
requirements include:

1 Parameters

a) Symbolic values must be used as arguments

b) Types of arguments must be compatible with a defined type

2 Function return values

a) Value has a properties, ie is positive, is negative

b) Value may only be compared against symbolic values

c) Feature test macros

d) Used to check availability of optional constructs

3 Variable types

a) Fields available in structs

b) No requirement on layout of fields

c) No requirement that the type be scalar

4 Not always constant

a) Macros need not evaluate to a compile time constant

5 Headers

a) Must be included

3.7.5 Function calls

An API function may accept input arguments, return a result or set status flags (for instance
errno).

Functions that may perform various operations usually take an argument specifying which
operation to be perform. For instance in:

fseek(file_ptr, 4, SEEK_CUR);

© 1992-1996 Knowledge Software Ltd Page 29

the third argument tellsfseek that the seek is to be performed relative to the current file
position. SEEK_CURis a macro whose value will chosen by each implementation. The
call:

fseek(file_ptr, 4, 1);

relies on an implementation choosing aSEEK_CURvalue of 1. As such it does not obey
the API specification, even though it will work on one or more implementations.

Some API’s have more complicated requirements. For instance the POSIX functionopen
may take one of three values (O_RDONLY, O_WRONY, O_RDWR) combined with zero
or more other values (O_APPEND, O_NONBLOCK, O_NOCTTY, O_TRUNC,
O_CREAT, O_EXCL). An API checker must ensure that the argument is created using the
correct boolean or of these macros.

Checking a variable that is passed as an argument is substantially more difficult. It requires
full flow analysis to track the symbols assigned to that variable. The current release of
OSPCdoes not perform such analysis in this context.

APIs also define the types of the function parameters. Provided the host compiler supports
function prototypes then the arguments given in calls to API functions will be checked at
compile time. It is ok to pass an argument of a different arithmetic type because the compiler
will automatically insert a cast to the required type. For instance ifsize_t has a
unsigned long type, passing anint argument will work because of the implicit cast
inserted by the compiler. Thus the developer does not have to worry about inserting casts
to size_t for all appropriate arguments.

Passing an incorrect non-arithmetic type will cause the compiler to generate a compile time
error. It is useful for an API checking tool to check that the arguments are compatible with
the declared parameters, but not essential.

Some company coding standards require that arguments passed to functions are ‘strongly
compatible’ with the argument type. That is the named types must matched. But this is a
coding standards requirement, not an API requirement (because of the implicit casts inserted
by the compiler).

API functions may also return values. These values may represent individual values or
particular properties, such as positiveness. For instanceprintf returns the number of
characters printed or a negative value if an error occurred.

if (printf(“abc”) == 3) /* OK */
;

if (printf(“xyz”) == -1)
;

The first example is checking the number of characters written against the expected value,
as allowed by the API. The second is assuming a particular value for the property of

© 1992-1996 Knowledge Software Ltd Page 30

negativeness. One implementation may return -1, another -2, another an arbitrary negative
value. The correct test would be:

if (printf(“xyz”) < 0)
;

here the relational operator is testing for the negative property.

Agrey area of checking involves functions that return a limited range of values. For instance
thetm_sec field of astruct tm may take on values between 0 and 61. Is the following
code fragment relying on an implementation defined extension or is it a coding bug?

if (t.tm_sec > 61)
;

OSPCassumes that it is a coding problem and does not flag this code as not conforming
to the API.

Like arguments, return values may sometimes be symbolic.

if (fflush(file_ptr) == EOF) /* OK */
;

if (fflush(file_ptr) == 1)
;

The second example is incorrect because it assumes a value for the symbolEOF.

Also relational operators may not be used in those cases where all the values returned by
an API function are symbolic.

3.7.5.1 Status flags

Status flags set by API calls are usually there to provide additional information. For instance
errno might be set to some symbolic value to indicate the type of a particular failure. Few
API’s require status flags to be checked by the application.

OSPChas the ability to detect that applications are checking status flags after an API call.
However, it makes the assumption that such checking must occur in the first conditional
statement after the API function call. This check is regarded as a coding standards issue,
not an API specification requirement.

3.7.5.2 Use of objects defined in API’s

Like function return values, objects often have limits placed on the values they may
contained. errno is an example of such an object. It may be reset to zero by the
application, or it may be tested (using an equality operator) against a variety of symbolic
names.

© 1992-1996 Knowledge Software Ltd Page 31

3.7.6 Optional constructs

Use of an optional API construct must be protected by a feature test macro. For instance
POSIX specifies that the function setuid is only available if the ftm_POSIX_SAVED_IDS
is defined. The developer thus has to write the code:

#ifdef _POSIX_JOB_CONTROL

setuid(23);

#else

do_something_else(23);

#endif

here the code is checking for the availability ofsetuid and taking alternative action if it
is not available.

Optional constructs may be any identifier declared or defined by the API.

Developers that are unaware they are using optional constructs have set a future trap in the
porting of their application. Users of packages also need to be aware of any optional
constructs required by an applications when specifying hardware or third party libraries.

3.7.7 Use of headers

Headers are the means by which identifiers defined by in API may be made visible to the
application. In some cases the header must be included because it contains information that
cannot be obtained elsewhere (for instance the values chosen by the implementation for
symbolic names). Sometimes it is possible for a developer to declare a subset of the API
without including the header.

Headers are necessary if symbolic macros and types are referenced from the application
source. For instance in the example involvingfseek above the headerstdio.h needs
to be included so that the compiler can obtained the value of the macroSEEK_SETchosen
by the implementation.

An example where an API header need not be include is thestrerror function. It is ok
to declare that function explicitly, rather than including thestring.h header. Because
its API specification only uses C predefined types,char *strerror(int errnum) .
However,memset could not be so declared in the users source without including the
string.h header (if the header is included why explicitly declare it anyway). This is
because the declaration ofmemset needs a type from that header,size_t . The developer
may declarememset with a particular predefined type instead ofsize_t , but that will
only work on implementations where that type is used to representsize_t . (The C API
specifies the typevoid *memset(void *s, int c, size_t n)).

© 1992-1996 Knowledge Software Ltd Page 32

3.7.7.1 Incorrect header contents

A problem that sometimes arises with API headers is that they do not accurately reflect the
requirements contained in an API. Fortunately the most common problem, incorrectly
specified parameter arithmetic types, does not affect the performance of a checking tool.
If, for instance, a vendors version ofstring.h declared the third parameter ofmemset
to take anunsigned int argument the interface is not broken from the applications point
of view, providedsize_t is also declared to have typeunsigned int . The compiler
vendor is at fault for not upgrading its headers to conform to the C standard (first published
in 1989 by ANSI and as an ISO standard in 1992).

Other problems often seen include syntax violations (text after a#endif not included
within comment delimiters for example) and incorrect numeric value for macros (floating
point values inaccurate in the last digit).

3.7.8 Use of API defined types

An API may define types to allow implementations to adapt themselves to different
hardware (usually different sized scalar types) or to combine together similar variables in
one place (a struct).

APIs rarely define the ordering of fields within a struct, although implementations are
usually given liberty to add additional fields to structs. Applications that rely on ordering
of fields or make use of implementation specific fields are going beyond the specification
given in the API.

3.7.8.1 struct fields

Initialisation of struct objects, via an initialiser, is one example where an ordering of fields
is implied. So the construct:

div_t local_var = {1, 2};

must be explicitly expanded out to (assuming the above assumed this order):

div_t local_var;

local_var.quot=1;
local_var.rem=2;

An example of an implementation adding additional fields to a structure isstruct
dirent . On a Sun platform the code fragment:

if (dirent_obj.d_reclen == 3)
;

would happily compile. Other platforms are likely to complain that the fieldd_reclen
does not exist (it is not in the POSIX or XPG API’s).

© 1992-1996 Knowledge Software Ltd Page 33

3.7.8.2 Type need not be scalar

An API occasionally leaves the specification of a particular type wide open. An example
is the fpos_t typedef specified in the C standard, which simply states “... which is an
object type capable of recording all the information needed to specify uniquely every
position within a file.” On many systems this type is a scalar. So the code:

if (fp_1 == fp2) /* two variables of type fpos_t */
;

works. But C does not allow the== operator to be applied to struct types. This code
fragment would fail to compile on a platform that definedfpos_t to be a struct (in fact
there is no portable way of comparing two objects of arbitrary type for equality).

3.7.9 Symbolic name need not be constant

API’s use symbolic macro names to represent values that may vary between implementa-
tions. Developers sometimes assume that because macros are used the value will be a
constant literal. This is sometimes not the case. For instance, of all the macros used to
describe properties of the floating point representation, in the C standard, only one,
FLT_RADIX, is required to be a constant expression. On many implementation the other
macros are indeed constant expressions, but they are not required to be.

The code fragment:

#include <float.h>

int number[FLT_DIG];

relies on FLT_DIG , the number of decimal digits in a number that can be exactly
represented in a float, being a constant expression. If it is an expression that must be
evaluated, as above, at runtime the compiler will not be able to compile the application.

3.7.10 Implementation specific and future problems

API’s often reserve specific names for future releases of their specification. They also allow
implementations to add additional names to headers, provided those names obey a few
restrictions.

The presence of these reserved names effectively constrains an application from defining
identifiers with those names. An application containing such a definition could fail to
compile on certain platforms, or with later versions of the API (because of duplicate or
inconsistent definitions).

Some reserved names are easy to avoid by the application developer, for instance those
starting with double underscore. Others might be considered more contentious. For instance
all macros starting withE (capital E) are reserved by the C standard if the headererrno.h
is included, and all external identifiers starting with the three charactersstr are reserved
in all cases by the C standard.

© 1992-1996 Knowledge Software Ltd Page 34

Experience has shown that applications often contain definitions of many identifiers whose
names clash with those reserved by API’s. The definitions could be changed to use
alternative names, but in many cases the effort involved is disproportional to the time and
effort needed to modify existing code.

Insisting that all names defined by an application not clash with those reserved by the API’s
used is impractical. Instead an API checking tool should list all definitions that do clash,
along with a count of the number of references to them. Applications vendors might also
undertake not to add new definitions to this existing list.

3.7.10.1 Identifiers specified to have properties

The C standard defineserrno to “... expands to a modifiable lvalue that has type int ... It
is unspecified whether errno is a macro or an identifier declared with external linkage.”
This is an example of an API defining properties of an interface rather than C syntax for its
implementation. The POSIX standard says “... which is defined as extern int errno;” An
implementation specification.

This kind of API object specification, using properties rather than C syntax is not very
common.

Ideally an API checking tool would know about the different properties defined by an API
and flag discrepancies. From the tools point of view such special cases are just that, special
cases. In the example above it was reasoned that few applications rely solely on the C
standard, most also include POSIX (or an API based on POSIX). So checks suggested by
the specification given in the C standard is not carried out byOSPC.

3.7.11 Use of identifiers of unknown status

Once the entire application has been processed all referenced identifiers are known.
Resolving these identifiers against those defined by the application and those defined by
the known API’s may leave some unaccounted for.

These unaccounted identifiers are assumed to belong to either an unknown API or extensions
to a known API.

In the case of variables and macros there will be a declaration in one of the included headers.
The name of the header may give clues to the status of the identifier.

Functions need not be declared prior to use. In this case the compiler will create a default
declaration ofextern int f() , wheref is replaces by the name of the function. So
there may not be a header name to refer to for guidance. Once again incorrectly written
headers can confuse the analysis. It is not unknown for vendors to supply headers with
some function declarations missing, even though code implementing that function is
available in a library that can be linked against.

© 1992-1996 Knowledge Software Ltd Page 35

A checking tool can do no more than list identifiers whose status is unknown. This list may
contain hints as to their likely status, for instance by giving the name of the header in which
any declaration occurred.

3.7.12 Identifier specified by several API’s

Sometimes a newer API will add functionality to an interface defined by an earlier API, or
define what was previously undefined behaviour. For instance the C standard says that the
rename function may be used to change the name of a file. But C has no concept of
directory structure, so it does not include any specification for handling directories, it
assumes a flat file system. POSIX defines a directory structure and adds to the specification
to rename to describe how directories are to be handled.

It is not always possible to deduce the use being made of an API interface from static analysis
of the source.OSPCtakes the view that if an identifier from an API is referenced then that
API is used, irrespective of the number of API’s involved.

3.7.13 Can all referenced API’s be detected?

No, they cannot. Consider the case of an API that only defines macros and types. Let us
assume that information on this API is not available toOSPC. Who is to say that the
included header, used to access the defined names, is not part of the application, rather than
an API? An example of of a header that only contains macros and typedefs isstddef.h ,
from the C standard.

In the case of objects and functions their definition is contained in a library, not in the source
making up an application. Such a library has the opportunity to modify an object and
functions may access host specific information.

Does it matter that use of an API may go undetected? Perhaps not. The developer has the
option of taking the headers containing the macro and type definitions and making them
part of the application source tree (if they are not available on a given platform). Of course
the developer then has to take over responsibility for ensuring that the definitions are correct
for each new platform.

In the ideal case theOSPCdatabase contains information on an API’s that an application
uses.

3.7.14 Information output by an API checking tool

End users need a list of the API’s used, along with a summary of any discrepancies. Software
developers would probably like any discrepancies to be pin pointed, simplifying the job of
isolating and fixing them.

Being able to output a list of applicable API’s relies on having a database of information
about what each API contains. This is turn requires an API to be documented, which,

© 1992-1996 Knowledge Software Ltd Page 36

unfortunately is not always the case (X11 being an example, where even the headers
provided can vary between platforms, let alone the header contents).

3.7.14.1 Information summary

1 API’s used

a) Optional components used

2 Violations of the defined interface

a) Type of violation and number of occurrences

3 Reserved ids used

a) API that reserves them

b) Identifier name and number of references to it

4 Identifiers referenced that are not in a known API

a) included header

b) functions

c) external identifiers

d) macros

© 1992-1996 Knowledge Software Ltd Page 37

© 1992-1996 Knowledge Software Ltd Page 38

Chapter 4

User interface and configuration

4.1 Introduction

All the components of theOSPC share the same user interface. This chapter gives an
overview of this user interface. There are four basic components:

1 Command line options

2 Configuration files

3 Profiles

4 Tool configuration files

Some options are common to all component tools, while others are specific to a given tool.
A list of options available for a given tool, together with their default values, can be obtained
by typing the name of the tool on its own at the command line.

4.2 Command line options

Arguments on the command line may be mixed in any order and have few restrictions on
their format. All command line arguments are processed before the component tool starts
to analyse the user’s file. Thus the following three commands all have the same effect.

mcl file1 -LOG- file2 -LOG+ -REF+ file3

mcl -LOG+ -REF+ file1 file2 file

mcl -VIA f.via file1 file2 file3

wheref.via contains the lines:

-REF+

-LOG+

Thus it is not possible to switch options on and off for specific files. Lines in via files are
processed as if they had occurred on the command line, not separated by new-lines (details
of the-VIA option are provided later).

© 1992-1996 Knowledge Software Ltd Page 39

Any sequence of characters immediately proceeded by a “-” (minus) character is treated as
a command line option. Each option processes the tokens that follow it in a predefined
manner. All other character sequences are treated as names of files.

A command line option can take one of the following forms:

1 Option without any other information.

-HELP

2 Option with a numeric parameter.

-NAMelength 31

3 Option with a string parameter.

-ECHO “Hello world”

4 On/Off option.

-LOG+

Zero or more whitespace characters may separate options from their numeric or string
parameter. Numeric and string options may consist of a list of values (e.g.,-I) or a single
value (e.g.,-NAMelength).

4.2.1 Abbreviating options

The user need not type the complete option name in some circumstances. Options may be
abbreviated. This abbreviation takes the form of missing off characters from the end of the
option name. Any number of characters may be omitted, provided sufficient remain to
disambiguate the option intended from any other possible options. The minimum abbrevia-
tion is given by the portion of the command in upper case on the help display.

mcc util -ARith+

mcc util -AR+

mcc util -ARithrsh+

All the above have the same effect.

4.2.2 Numeric parameters

The format of numeric parameters follows the same rules as C literal constants. They may
be given in decimal, hexadecimal, or octal.

© 1992-1996 Knowledge Software Ltd Page 40

mcl -NAMelength 0x3000

mcl -NAMelength 030000

mcl -NAMelength 12288

All have the same effect. The maximum value possible for a particular option can be
obtained by specifying the keywordMAXrather than a numeric value.

mcc prog -NAMelength max

4.2.3 String parameters

These take the form:

1 A normal string. Here the string is terminated when the first whitespace character
is encountered. These are represented by the notation<letter-sequence> .

2 The name of a file. Like (1) it is terminated when the first whitespace character is
encountered. The current path prefix (if any) as added to the front of the filename.
These are represented by the notation<filename> .

mcc prog -O /usr/demo/Example1/util.kic

3 Argument to-SHStart or -SHEnd . The arguments to these options are delimited
by a single character. The character used is the first non-whitespace character seen
after the option name. The string is terminated when the same character is next
encountered. These are represented by the notation<string> .

mcc prog -SHStart !ps ax!

4 Argument to-ECHOor -REM. These options cannot occur on the command line.
When they occur in an options or via file the argument consists of the rest of the
line. These are represented by the notation<string> .

-REM Profile for a 68000 cpu

-REM

4.2.4 On/Off options

Options taking this form are followed by:

1 ‘+’ turn option on

mcc -Lis+

© 1992-1996 Knowledge Software Ltd Page 41

2 ‘-’ turn option off

mcl -Lib-

3 if no character follows the option, a ‘+‘ is assumed and the option is turned on

mcc -Q

Note: No whitespace is allowed between the option name and the+/-.

4.2.5 Default option settings

If a configuration or local options file is available and has been successfully read then the
default values will be picked up from that file. Otherwise each component tool contains
internal default values which are set prior to reading the configuration file (the default
default settings).

The settings of the default values currently in force are displayed next to, or below, the
option name when the help screen is given.

For details of the structure of the default options, configuration strings and error files, and
a discussion on how to change them see Chapter 2 in the User Reference Guide.

4.3 Local options file

Sometimes a user may want a different set of options to be in force while processing a
particular group of files. One approach would be to make a local copy of the options file
and to modify the options setting in that configuration file. The-CONFIG option could
then be used to cause this new option file to be read. Rather than having to give the same
command line arguments for every input file it is possible to create a local options file.

A local options file may contain a series of command line options. This local options file
is read after the default options have been read. Thus it overrides any settings made in the
options file.

In turn, any command line options take precedence over the settings given in the local
options file.

The local options file is search for in the current directory. Its filename is generated by
appending the letters ‘rc’ to the component tool name and prefixing a ‘.’ character, i.e.,
.mccrc .

© 1992-1996 Knowledge Software Ltd Page 42

4.3.1 Creating a local options file

The local options file is a text file that can be created using a text editor. It should contain
one command option per line. These options may add to, or override options contained in
the default options file.

-I /usr/me/myheads

-List+

In this example the-I option causes the path/usr/me/myheads to be added to the list
of places to be searched when looking for header files. The default for the-List option
may be either on or off. Here we are overriding the default setting to switch the listing on.

The-Forgetall option may be used to undo the effects of previous options.

-Forgetall nomsg

This line causes all previous message suppressions (the effect of the-Nomsg option) to be
reactivated, i.e., the behaviour is the same as if they had never been given.

4.4 Error reporting

Each component tool has uses the same error reporting machinery. Because of its capacity
to report on such a wide range of problems the output fromOSPC can sometimes be
overpowering. A range of options has been provided to enable the user to control the
generation of warning messages. These include the ability to:

· Stop checking after a given number of errors/warnings

· Suppress specific errors/warnings

· Suppress warnings below a given level

· Switch to strict C standard mode

Each component tool also has error reporting options that are specific to its role in the
checking process. These are described in the chapter on that tool. The following options
can be used with any of the tools.

Sometimes a run ofOSPCresults in a large number of error messages occurring. This can
happen because there are large numbers of problems in the source or because of some syntax
error thatOSPC failed to recover fully from. The-MAXErrors option enables the
maximum number of allowable errors to be specified. Once this limit is exceededOSPC
stops processing the current source file. The-MAXWarnings option is similar to-MAX-
Errors except that it applies to warnings.

© 1992-1996 Knowledge Software Ltd Page 43

<tool> prog -MAXE 55 -MAXW 200

Rather than haltingOSPCafter a given number of warnings, analysis of the messages may
show that the majority are caused by a few constructs. The-Nomsg option can be used to
switch off individual error or warning messages. Once a given error or warning has been
switched off it will not appear during the current invocation ofOSPCand will not contribute
to the message count.

Note: Disabling fatal errors serves no useful purpose. Any messages given after a sup-
pressed constraint error may be difficult to interpret without seeing the constraint message.

To disable warning numbers 43 and 97 type:

<tool> prog -N43 -N97

Another method of reducing the number of warnings produced is to cut off those below a
certain level. The error message file associates one or more numeric levels with each error
number it contains. The number given in the-SUppresslevel option can be used to
act as a cutoff. Messages with levels below the value given will not appear in the output.

<tool> prog -SU6

Thus if the highest level specified for a given message level is 5 and the cutoff is 6 no
messages will ever appear for that error number. If messages at levels 5,6 and 7 are available
for a given construct and the cutoff is level 6 then the level 6 message acts as the minimum
level available.

By defaultOSPCis tolerant. It assumes the lowest severity message possible. It is possible
to reverse this behaviour. The-STandard option does not causeOSPC to perform any
more checks. Rather it causes the messaging system to use the highest level of message
available. The default behaviour is to attempt to recover from errors and use the lowest
level message possible. When the-STandard option is switched on recovery still occurs,
but the highest level message possible is given. It also disables the use of extensions.

<tool> prog -ST+

If messages at levels 5,6 and 7 are available for a given construct. Switching on the
-STandard option causes the highest available message, 7 in this case, to be given. If
this option had not been switched on the message at level 5 would have been given.

Note: The error reporting machinery will never give the same warning on the same token.
To be more exact, when errors are reported the system remembers what error numbers have
already been given for each token. Once an error number has been reported for a given
token it is not given again for that token. It is possible for the same error number to appear
on adjacent tokens.

© 1992-1996 Knowledge Software Ltd Page 44

The messages reported byOSPC are intended to be informative and easily understood.
Sometimes this aim may not have been achieved or the user wants further information.
Switching on the-REFerence option causes the message reporting machinery to also
give a reference to the standard (provided one is present in the error file) with the text of
any messages generated.

<tool> prog -REF+

4.4.1 Locating the error files

Given that each tool and standards profile has its own associated error file it can sometimes
be difficult to find out where particular error messages are kept. Theerrorrange command
(actually it’s a script) will list each error number and the file where it can be found.

4.5 Platform profiles

Platform profiles are a method of encapsulating all the relevant information about a given
computing platform. As well as providing a convenient tag for describing a given platform
they can also be used to give more specific warnings about non-portable constructs. By
knowing the source and target platform it is possible to filter out those warnings that are
not applicable. Those warnings that are generated are specific to porting the software from
one machine to another.

The information relating to each platform is held within a group of directories. The
organisation of these directories is derived from the underlying components that create a
platform. These include the cpu, compiler and O/S. By organising the information in this
fashion it is possible to reuse profiles, once created. For instance once the Sparc cpu profile
has been created it can be referenced from any profile that contains a Sparc cpu.

Each component tool ofOSPC has a large number of options. Most of these relate to
technical details of cpus and compilers. Platform profiles allow these details to be hidden.
The default help text excludes those options, for a given tool, that are dealt with through
platform profiles. These options can still be given on the command line and a full list of
the options can be obtained by using the-DETail help option.

It is possible to create, modify and delete platform profiles. This is best done using the
profadm script. Full details on this tool can be found in the User Reference Manual. Type
Bprofadm to get obtain a list of possible options.

4.5.1 Paths

In several situations the path used to locate a file is deduced from information provided by
the system.

© 1992-1996 Knowledge Software Ltd Page 45

The checkinfo directory is located by finding the path along which the tool currently
being executed was found. Thus if that tool is moved to another directory it is also necessary
to move thecheckinfo directory.

The default include path and the location of the filelib.klc are kept in the file
checkinfo/host/locate . This file is created by thedoinstall script.

The only other mechanism used to locate files is through the Unix environment variable
PATH. This follows the standard Unix rules.

4.6 Common options

The following options are common to all tools. In some cases these options have been
extended within a given tool. Where this has happened details on the extension are provided
in the chapter dealing with that tool.

4.6.1 Changing the configuration

The configuration of theOSPC is ‘soft’. That is the options are read in at startup, rather
than being compiled in. This flexibility allows it to support a wide range of architectures
and compilers.

At some time users will want to change the default configurations. The-COnfig option
provides a means of doing this. Since there are multiple configuration files the parameter
to this option specifies which configuration is being changed. The common configuration
files are:

· ‘strings’. The strings for all the output produced by the tool.

· ‘options’. The default option settings.

· ‘locate’. The location of the various special files, e.g., libraries.

Example

mcc prog -config strings=/home/usr/fred/misc/newstrings

Each tool may also have its own individual set of configuration files. These are described
more fully in the chapter on that tool.

If the file cannot be opened, or is not in the correct format an error message is displayed
and processing stops.

The layering of the configuration option processing can sometimes result in an option
obtaining a value that needs to be got rid of. For options taking single values it is simply a
matter of specifying a new one. However, some options build up a list of values. For instance

© 1992-1996 Knowledge Software Ltd Page 46

an-I option does not undo the effects of any prior-I option. It adds a new path to the list
of existing paths.

The -Forgetall option provides a means of ‘loosing’ these values. It must be applied
to an option that takes lists of values, or a single string. The following options are some of
those that may be ‘forgotten’:

LOGfile Cancel request for logfile.

NOmsg Reinstate any previously suppressed error numbers.

Output Use default output filename.

PAth Cancel previous prefix.

Each tool may also have its own individual list of option values that can be forgotten. These
are described in the chapter for that component tool.

It is sometimes the case that certain command line options are frequently used with a given
set of files. Such a sequence of options is unlikely to warrant being placed in the local
configuration file. Another possibility is to place the options in a file and cause that file to
be read from the command line. The-Via option provides just such a facility.

Via files are text files, created by the user, that contain frequently used command line options
and their parameters. Options in a via file are given one per line. A via file may contain a
reference to other via files (to an arbitrary depth, subject to the maximum number of files
that can be open at any instant). Each reference will be processed as it is encountered, and
when the end of the file is reached processing will continue in the original file with the line
after the-Via option.

All output generated bymcc is sent tostderr . The-LOGfile option can be used to
specify the name of a file to which the output should also be written.

mcc prog -LOGfile results.log

Causes all output that is sent to standard output and standard error to be sent to the file
results.log .

4.7 Environment variables

OSPC follows the same conventions as the Unix shells in the handling of environment
variables. Identifiers that begin with a$ character are substituted by the value of the
environment variable of the same name. Thus if the options file contained the line:

-i$INCLUDE

© 1992-1996 Knowledge Software Ltd Page 47

and the environment variableINCLUDE had the value/usr/include the effect would
be the same as if:

-i/usr/include

had been written.

The handling of the$ character in via and options files is intended to mimic the shell
expansion on the command line. So that a use of$ as an argument on the command line
will have the same effect if placed in a via or options file.

Auseful point to remember, for creating unique file names, is that$$ expands to the process
number of the tool currently being executed. Also shell conventions for environment
variable expansions can be used, as in:

-i${ROOT}/include

4.7.1 Predefined variables

The system environment variableHOMEis used to locate the .rc files.

Each tool may make use of other predefined environment variables. These are described
in the chapter on the respective tool.

4.8 Order of reading setup information

Each tool obtains information on options from several sources. In order to know how these
interact it is necessary to know the order in which the various options are processed.

The profiles, local config file and command line options are processed in the following
order:

1 Host, source and target are assigned default-default values

2 Command line is read, and immediate options are processed

3 Host/config default file (mcc/options) is read

4 The file .mccrc , located along theHOMEpath file is read, and overrides host
information.

5 Any .mccrc file in the local directory is read, and overrides host information.

6 Source default file (mcc/srcopts) is read

7 Target default file (mcc/tgtopts) is read

© 1992-1996 Knowledge Software Ltd Page 48

8 Source platform profile read

9 Target platform profile read

10 Target options overrides host information

11 Command line options override host information.

4.8.1 Processing the component profiles

When a platform profile is read, its components are read in the order :

1 cpu

2 abi

3 standards

4 os

5 compiler

6 misc

This reflects the natural order of precedence: Compilers have ultimate control over the code
that is produced, and how it interfaces to the O/S etc. An ABI can be more specific than a
cpu definition. An O/S, and compiler, may choose whether or not to implement completely,
the standards they proport to support.

Options that are not given explicit values retain their default default values.

4.9 Integrating with other tools

How theOSPC tools process their options has obviously been influence by existing Unix
conventions. In particular thecc and ld commands have influence the choice of options
and the action that they perform.

All tools provide return codes. The conditions required to return a given value follow the
same conventions as other Unix tools. Use of return codes is necessary for the make file
machinery to work correctly. The range of possible return codes and the conditions under
which they are given are described in the chapter on the respective tool.

© 1992-1996 Knowledge Software Ltd Page 49

© 1992-1996 Knowledge Software Ltd Page 50

Chapter 5

OSPC source checking

5.1 Introduction

The name of theOSPC tool that performs checks on the source code ismcc (Model
Implementation C Checker).mcctakes a C source file, known as a translation unit, performs
syntactic and semantic checks and generates a .kic file. This .kic file can be processed,
along with other .kic files, by the cross translation unit checkermcl (Model Implementation
C linker) to detect cross unit inconsistencies. The C source file may include other source
files. Other input to the compiler includes information on the source and target platforms.
The default configuration is formccto operate as much like the host C compiler as possible.
Thus both existing make files and scripts can easily be used.

During startupmccattempts to locate various configuration files and read the options they
contain. If these configuration files cannot be located internal default values are used.
While processing the source, the main difference from using the development compiler,
typically cc, that will be noticed is thatmcc gives significantly more warning messages.
This difference is to be expected sincemcc’s basic job is to give the user information about
potential problems in the source.

For obvious compatibility reasons the functionality provided bymccand its command line
options have been influenced by the Unixcccommand.

5.2 Using mcc

This section gives a quick overview of the more commonly usedmcc options. A full
description of all options can be found in the User Reference Manual.

Mcc is invoked by typingmcc followed by the name of the file to be compiled:

mcc file

mccwill add the suffix .c if one is not given.

Mcc can process more than one file at a time. It also accepts a range of options. To obtain
a list of these options (help text) type:

mcc

or

© 1992-1997 Knowledge Software Ltd Page 51

Static checker input and output files

Static Checker (mcc)

Command
line options

User Source System
Headers

LOG KIC LST

Platform
Profiles

Local
Configuration

mcc -help

Probably the two most important options given tomcc are the source and target platform
profile names.

mcc prog -src sun4

The-SOurce option specifies a platform on which the program is known to compile and
execute correctly. If no target platform is given the default is used. The default target
platform can be overridden by specifying one on the command line.

mcc prog -src sun4 -tgt cabstract

Wherecabstract is the name given to a platform profile that follows the exact letter of
the ISO C standard (a full list of supported platforms can be obtained by using theprofadm
command with theLIST option). If the name given for the platform profile cannot be found
a warning is given and the internal default values used.

The platform profile information is used bymcc to reduce the number of ‘uninteresting’
warnings generated.

The warnings generated bymcc only give local context. If a source line does not contain
a warning it is not output. The-Listing option can be used to cause messages to appear
in their context. Switching this option on causes a list file to be generated. A listing file
contains the preprocessed source of the input file plus any associated error or warning
messages. The source file name is used to create a listing file, by substituting a .lst for the
.c suffix (or implied .c if none is given).

mcc prog -l+

will cause a list file calledprog.lst to be generated. This listing will contain the text of
the preprocessed source along with any messages that might have been generated. If an
exact copy of the

mcc prog -trace input

input source is required the-TRACE input option should be used. This will cause each
line of input to be sent to standard output, as it is read in.

A related option is-PPlist . This option is similar to the-Listing option, but with
the difference that the file produced is compilable (assuming that there were no constraint
errors in the original). A .i is appended to the output filename.

mcc prog -pp+

creates a file calledprog.i . All the preprocessor directives will have been expanded.
That is all include files will have been included, all macros expanded and the conditional

© 1992-1997 Knowledge Software Ltd Page 53

compilation options selected. The main use for this option is in helping to pin down those
errors that are hard to spot in the original source, because of heavy use of preprocessor
directives.

Command line options may also affect the way that the source code is processed. Two such
options are-D (for define) and-I (for include).

The-D option allows the user to define C macros from the command line. These macros
are treated as if they formed the first lines of the source file being compiled. There are two
forms of this option:

-D ident is equivalent to placing the C preprocessor directive:

#define ident 1

at the beginning of the file being compiled. While:

-D ident=string is equivalent to the C:

#define ident string

Note:

-D ident= is equivalent to:

#define ident

Whitespace may not be used to separate the= character from the preceding identifier or
following string.

The -I option causes the specified directory to be added to the list of directories used by
the#include file search algorithm.

mcc prog -i../common

By default the name of the input source file (striped of any associated path) is used as the
basis of the generated output .kic filename. The-Output option causes the given name
to be used as the .kic filename.

mcc prog -o newfile.kic

causesprog.c to be compiled and the namenewfile.kic to be used to hold the
generated code and symbolic information.

If more than one source file is being processed the-OUTPUTPath option can be used to
specify a directory other than the current to which the output should be written.

© 1992-1997 Knowledge Software Ltd Page 54

mcc prog1 prog2 -outputp ../temp

Some language extensions have become so common on certain hosts that the majority of
compilers on those hosts support them. On DOS these extensions include the keywords
near, far, huge, pascaland fortran. The -EXtensions option tellsmcc to enable the
handling of specific, known, extensions. How these are handled varies according to the
extension itself. Full details can be found in the User Reference Manual.

mcc prog -ex dos

The other major compiler extension support via this option is SVR4. The#assert
functionality is commonly used in the system files on this release of Unix.

An alternative technique, for DOS at least, is to use the-D option to ‘null out’ the presence
of these tokens.

mcc prog -Dfar= -Dnear= -Dhuge=

5.2.1 Error reporting

With the ability to report over 1,500 different problems in the source code the output from
mcc can sometimes be overpowering. A range of options has been provided to enable the
user to control the generation of warning messages. As well as the common error control
options there is one option specific tomcc.

Not all of the source code seen while processing a translation unit is under the user’s control.
Sometimes it may be necessary to use a header file other than those supplied with theOSPC.
These alternative headers, perhaps provided with the development compiler, may not be
strictly conforming. Declarations and definitions within these headers may therefore be
flagged bymcc. However, the user does not always want, or have the option of changing
these headers.

Switching the option-HDRsuppress on causesmcc not to display any messages about
the contents of systems headers.

Note: A constraint error within a system header will still be flagged.

mcc prog -hdr+

Sometimes a run ofmcc results in a large number of error messages occurring. This can
happen because there are large numbers of problems in the source or because of some syntax
error thatmccfailed to recover fully from. The-MAXErrors option enables the maximum
number of allowable errors to be specified. Once this limit is exceededmccstops processing
the current source file. The-MAXWarnings option is similar to-MAXErrors except
that it applies to warnings.

mcc prog -maxe 55 -maxw 200

© 1992-1997 Knowledge Software Ltd Page 55

Note: Disabling constraint errors, using the-Nomsg option, serves no useful purpose. Any
messages given after a suppressed constraint error may be difficult to interpret without
seeing the constraint message.

The messages reported bymcc are intended to be informative and easily understood.
Sometimes this aim may not have been achieved or the user wants further information.
Switching on the-REFerence option causes the message reporting machinery to also
give a reference to the standard (provided one is present in the error file) with the text of
any messages generated.

mcc prog -ref+

While processing a source filemcc gives information on its progress. Switching on the
-Quiet option causes the generation of this progress reporting output, including the
reporting of errors to standard output to be disabled.

mcc prog -q+

5.2.2 Forgetall

In addition to the common parameters to this optionmccalso supports:

Assert Forget previous assertions

CODES Forget previous coding standard enablings

D Forget previous definitions

I Forget include paths given so far

PAth Forget previous paths

Size Forget previous settings for sizes of objects

STRUCT Forget previous STRUCT file names

For instance an-I option does not undo the effects of any prior-I option. It adds a new
path to the list of existing paths. To change the order in which paths are searched it is first
necessary to forget any previous paths. A new path ordering can then be specified.

5.3 Nonconforming constructs

So far we have discussed the basicmccoptions that might be given on the command line.
This and the following sections will deal with those aspects ofmcc that fall into the realm
of standards conformance checking. They deal with constructs that are perfectly legal ISO

© 1992-1997 Knowledge Software Ltd Page 56

C code. But the use being made of these constructs puts them outside the bounds of another
standard.

5.4 String contents

Source code that contains the full path names of files is unlikely to be portable. These path
names are likely to be contained within strings. The identifier pattern matching function-
ality can also be used to search for patterns contained within strings (paths are simply the
most likely use).

#include “/usr/include/ed.h”

char *ed = “/bin/vi”,

*tell = “The editor is /bin/vi”,

*what = “The file /bin/vital holds important information”;

In the above code several constructs could be flagged:

1 The use of absolute pathname in the i#include. directive.

2 The use of file names in strings.

3 The use of a particular string, for instance the word “file”.

See the section on#strings in the Reference Manual.

5.5 Status flags

As well as passing back information to the caller via a return result, or parameters; functions
may also assign to global status flags. For instance many of the C library functions may
seterrno .

Many coding standards require that status flags set by function calls be checked.

x = sin(y);
if (errno == ERANGE)

/* out of range error, do something */

While processing the C sourceOSPCnotes any status flags that might be set by API calls
(of course such information has to be available in the API database). If the status flag is
not checked in an immediately followingif statement a warning is given.

A warning is also given in the following case:

x = sin(y1) + cos(y2);

© 1992-1997 Knowledge Software Ltd Page 57

where each call may independently seterrno . No warning is given if the calls could only
have assigned one, identical value, to a status flag.

The API database can also hold information specifying that API calls check specified status
flags. Calls to such functions are regarded as being equivalent to anif statement, i.e., the
status flag is marked as having been checked.

See the section on#status flags in the Reference Manual for more information.

5.6 Sizes of datatypes

The C language is used to write application for a wide range of processor types. Depending
on the power of the processor the sizes of the basic language data types may vary. The most
commonly seen variations are in theint type. This might be 16, 32 and now 64 bits wide
(thechar type may also be larger than 8 bits on some signal processing chips, but this is not
discussed here).

Objects ofint type are probably the most common datatype used in a C application. It is
also the default type for function return types and parameters. In an attempt to be ‘friendly’
C specifies many instances where implicit casting occurs. So developers are not required
to insert explicit casts. In some cases an application may have assumptions about the size
of this type built into it. OSPCcannot help in the area of algorithm redesign. But what it
can do is flag those instances where implicit type conversions are likely to cause problems.

Probably the most common cause of problems are assumptions about the relationship
between the sizes of data types. In particular betweenint andlong(and sometimes between
int, long and pointers). In the Unix world it is commonly assumed thatint andlong have
the same size (and thatlong and pointers have the same size).

OSPCuses the cpu component of the platform profile to work out if there are likely to be
problems in porting to the target processor.

In the following example:

func();
{
long l;
/* ... */

return l;
}

the function,func, defaults to returning anint type. However, the return statement contains
an expression of type long. The C standard specifies that an implicit cast needs to be inserted
and anint returned. If this code was written on a platform whereint andlonghad the same
size there is the possibility that the developer had been lazy and omitted the return type.
OSPCwill flag this function (given a 32 bit source and 64 bit target), suggesting that the

© 1992-1997 Knowledge Software Ltd Page 58

return type might belong. Inserting an explicit cast on the return expression would make
the intention clearer and no warning would occur.

Discrepancies caused byint andlong types being mismatches across interfaces are flagged
by the cross unit checker. This topic is discussed in the next chapter.

5.6.1 Using prototypes

When porting to a machine where the sizes of the scalar types are different from the source
processor, prototypes are essential. A header that contains the declaration:

long a_func();

or even worse:

another_func();

says nothing about the parameter types. In the second case we can only hope that anint
return type was intended.

If a function prototype is used the development compiler andmcccan use the information
provided to ensure that calls to functions are as intended. Without prototypes a development
compiler will simply follow the rules for default promotions andmcc will flag any
incompatible calls. If prototypes are not available the developer will have to insert casts on
the parameters of all calls whose type is notint.

5.6.2 Types of constant expressions

Unless given a prefix the type of an integral constant expression is governed by the nearest
type into which it will fit (ok there are are some complications for hex and octal literals).
When porting to a platform that uses more bits to represent integers than the source platform
there are likely to be some changes in types. It is likely that literals that once hadunsigned
int type will now be represented asint.

Extra bits used in the representation could also mean that constant arithmetic that previously
overflowed, or wrapped, will now yield the correct, larger, value. Such constant folding is
common in conditional inclusion directives in the preprocessor.

InternallyOSPC is capable of handling integral arithmetic to any precision (well actually
64k bits in a long). As shipped it is built to be able to handle up to 64 bits in an integral
type. Thus those integral literals that will have a different type on the target platform, from
the source platform, will be flagged. Also, when constant expressions are folded those cases
where the result will vary, depending on the number of bits in the datatype, will be flagged.

© 1992-1997 Knowledge Software Ltd Page 59

5.7 Embedded SQL

Applications that make use of databases may interface to them via API calls or embedded
SQL. In the case of embedded SQL database vendors provide preprocessors to convert the
SQL into C prior to passing it through a compiler. A lot of information is lost in this
preprocessing phase. Not to worryOSPCsupports the embedding of SQL in C, using the
-SQL option.

While processing the SQLbasic checks are made to ensure the consistency of the statements,
i.e., host variables given in anINTO clause are consistent in with the select expression.
Also use and assignments of host variables is tied into uninitialised variable checking.

int some_global = 4;

void f0()
{
char val1,

val2;
int i,

k1,
k2,
pno1;

struct {
int salary;
int holiday;
} emp;

EXEC SQL
GET descriptor ’ext_cur_name’ :i = COUNT ;

/* use of undeclared host variables flagged */
EXEC SQL

GET descriptor 1 :undeclared = COUNT ;

/* k2 used before it is assigned to, flagged */
EXEC SQL

SET descriptor ’ext_cur_name’ COUNT = :k2;

EXEC SQL
SET descriptor ’ext_cur_name’ VALUE desc_id = :k1;

EXEC SQL
UPDATE employee

SET salary = :emp;

/* pno1 used before it is assigned to, flagged */
EXEC SQL

SELECT SP.SNO
INTO :val1
FROM P
WHERE SP.PNO = :pno1

;

some_global=val1; /* val1 was assigned to above */
}

OSPCsupports the full SQL/2 standard. Most vendors have added their own extensions.
The-SQLV option can be used to enable a particular vendor extension (Oracle, Ingres and
Informix are currently support to varying degrees).

© 1992-1997 Knowledge Software Ltd Page 60

5.8 Lint checks

Lint is the name of a tool, written in the early days of Unix, designed to look for potential
coding problems. Lint like problems might be regarded as constructs, which while
conforming C, might be coding errors on the part of the programmer. The classic example
is:

if (x = 3)

where the equality operator,==, operator was probably intended, not the assignment
operator.

Switching on the-Lint option causesOSPCto flag lint like constructs.

Sources of information on what to regard as a lint like construct include: user requests, the
Unix lint tool and various company coding standards.

5.8.1 Identifier usage

Externally visible identifiers should be declared in a header. As a consistency check this
header should also be included by the file that defines the identifier. When enabled the lint
option will cause any externally visible identifiers, not declared in an included header, to
be flagged.

There are several possible situations where use of locally defined identifiers may be
suspicious.

1 Value assigned to an object, which is not subsequently referenced. It may be
possible to change the assignment to a void expression.

2 Defined identifier is not referenced. The definition can be removed. This check is
also done forstatic definitions.

3 The object is only assigned to once. It may be possible to declare the object using
theconst qualifier and assign the value as an initialiser.

Host variables occurring within embedded SQL are also checked.

5.8.2 Use of headers

As a program evolves the headers files included at the top of a translation unit continue to
grow. Header files that are included, but not referenced add to compilation times and
complicate make files.

When enabled the lint option causesmccto check the usage of each included header. Those
whose contents are not referenced, by the main body of the C source, are flagged as such.
Note that headerabc may refer to an identifier in headerxyz , but neither header be referred

© 1992-1997 Knowledge Software Ltd Page 61

to from the including C file. If the#include “xyz” is removed the#include “abc”
will also need to be removed.

5.9 Coding standards

Using the-CODESoption tellsOSPC to do coding standards related checks.

5.9.1 Code layout

While editing an existing program sections of code are sometimes moved around. It can
be difficult to follow the nesting of conditionals in complicated functions and mistakes are
made. The indentation of a statement is often a reliable guide to its intended nesting level.
When enabled the lint option checks the indentation of statements and flags those that differ
from previous statements in the same block.

Other layout issues include:

1 The use of braces, both in their presence and where they are placed.mccattempts
to flag inconsistent usage.

2 Multiple statements on the same line (multiple statements derived from the same
macro invocation are not flagged).

3 Multiple declarations on the same line.

5.9.2 Implicit casts

The C standard does not require that two types be exactly the same. In many circumstances
an implicit cast will be inserted. Switching on this check will cause ‘suspicious’ implicit
casts to be flagged.

5.9.3 Loop checks

The C for statement is defined in terms of thewhile statement. Many coding standards
mandate that the loop control variable only be modified within the loop header and not
inside the compound statement. When this check is enabledmcc analyses loop headers
looking for ‘suspicious’ constructs.

5.9.4 Appearance of a comment

Many coding standards require that major language constructs be preceded by a comment.
When enabled this coding standard option flags any major construct that is not preceded by
a comment.

© 1992-1997 Knowledge Software Ltd Page 62

5.10 Metrics

Software metrics do not give warnings about a specific source construct. Rather, they flag
whole functions or expressions where a particular metric has exceeded some limit. The
value of this limit being based on analysis of other code with a known problem history.
Metrics are a statistical indicator of the likely hood of an error occurring in a portion of
code. Another way to use metric information is to monitor how they change, for a given
piece of software, over time.

5.10.1 Which metric?

Many different measures of software complexity have been proposed. Interestingly many
correlate very highly to lines of code.

OSPC does not attempt to select among the competing metrics. Instead it focuses on
producing the raw data from which most metrics can be calculated. This data is written to
a .met file, if the -METrics option has been switched on. It is the job of other tools to
calculate and display metric information. The source code of such a tool is provided in the
software distributed withOSPC.

The contents of a.met file are described in the Reference Manual.

5.10.2 dispmet

Thedispmet directory on the distribution tape contains the source of a program that takes
a .met file and displays various metrics, using information from that file.

To create an executable from the source provided use the make file provided as part of the
distribution.

5.11 make

It is intended that theOSPCbe integrated into a companies standard development environ-
ment. The most common tool used to support the building of applications ismake. Thus
it is very important that existing make files be supported with the minimum of effort.

There are several methods of approaching this problem. We will discuss them here and
outline their advantages and disadvantages. The final choice is left at the discretion of the
user.

One problem that is common to all methods is where to put the .kic files. If they are placed
in the same directory as the source and object code they may well cause excessive clutter.
One possibility is to create a subdirectory and use the-OUTPUTPath option to redirect
all output to this directory. If it is not intended to perform cross unit checking the-CHECK
option can be used to switch off the generation of .kic files.

© 1992-1997 Knowledge Software Ltd Page 63

5.11.1 ccc

This shell script is provided as part of the standard distribution ofOSPC. It’s purpose is to
replace thecc command in make files. Theccccommand actually invokescc, but before
doing so it invokesmcc. Thus all files that are recompiled as a result of any changes made
to them, or their dependencies are automatically rechecked as well as being recompiled.
Theccccommand will also invokemcl to perform the cross unit checks if a link is requested.

At least one and perhaps two changes will need to be made to the make file to support the
use ofccc.

1 Instead of setting the value of theCCmacro on the command line, the line:

CC = cc

could be changed to:

CC = ccc

It is possible that this line does not already exist in the make file. In this case it can
simply be added near the start of the file, with the other macro definitions. It is also
necessary to ensure that$(CC) is used throughout the make file, notcc.

2 The lines:

.c.o :
$(CC) $(CFLAGS) $<

should be added to the make file (note that the second line contains a tab character,
not multiple space characters). Chances are that these lines do not already exist in
the make file. They describe the default rules for creating a .o file from a .c file.
Note that on some platforms the default rule for invokingccalso define some macros
via the-D option.

3 If use is made ofar to build libraries the line:

AR = ar

has to be changed to:

AR = arr

It is possible that this line does not already exist in the make file. In this case it can
simply be added near the start of the file, with the other macro definitions. Similarly
within the body of the make file any occurrence ofar should be changed to$(AR) .
This will cause libraries of .kic files to be created.

© 1992-1997 Knowledge Software Ltd Page 64

By having a make file that explicitly contains the rules for creating a .o file from a .c file
the user at least knows what is going on. In some cases users may not want to change the
value of theCCmacro to beccc. In this casemakecan be invoked with the command line:

make CC=ccc

Because it appears on the command line the assignment toCCwill override any that may
appear in the make file, or in the environment.

5.11.2 c89/mcc

Usingmccinstead ofccchas the advantage that it is not necessary to invoke the development
compiler every time the code is checked. However, there is the danger that command line
options may clash. The scriptc89provides acc compatible interface tomcc (it is named
after the POSIX.2 tool for compiling C source). However, becausemccgenerates .kic files
not .o files, additions will have to be made to the make file. Specifically:

1 A new suffix will have to be supported, add the line:

.SUFFIXES : .kic

to the make file. If a.SUFFIXES line already exists in the make file then add the
.kic to the end of that line.

2 A rule for creating .kic files from .c files will need to be added:

.c.kic :
c89 $<

The user has the choice of giving options tomcc here, via a make file variable or
via the local options file.

The largest change that will have to be made to the make file is to change the names of the
dependent object files fromxxx.o to xxx.kic . This will invariably involve making a
copy of the make file.

5.11.3 Scripts

The use of a make file reduces the amount of resources that need to be employed to check
the software, after a change has been made. But did does not allow the user to control
exactly which files are to be checked (makeassumes that the application needs rebuilding).
If only a few files are to be checked it may be simpler to use a script.

The following script file will cause all files ending in .c to be processed bymcc.

for file in *.c

© 1992-1997 Knowledge Software Ltd Page 65

do

mcc $file

done

or, undercsh:

foreach f in (*.c)

mcc $f

end

Here it is assumed that a local.mccrc file contains the required command line options.

This approach does not help much when it comes to cross unit checking. A via file,
containing the names of all the files that are to be checked, will have to be created. This
can be fed intomcl manually. Alternatively the command line:

mcl -o target.klc *.kic

might be used.

5.12 Other C compilers

Some C compilers have extended the language beyond that given in the C Standard. Use
of language extensions ties an application to a given platform. However, there are two
platforms that have sufficient market penetration to tempt users into using the extensions
provided.

In the DOS world the architecture of the Intel 80x86 cpu provides for multiple ways of
representing pointers. Extra keywords have been added into the language, by most compiler
vendors, to support these representations.

The AT&T System V release 4 C compiler provides various extensions to the preprocessor.
The most notable being#assert and the use of identifiers defined by this directive in
#if directives. The SVR4 C compiler is available on all platforms running that release of
the AT&T version of Unix.

The compiler in widespread use with probably the most extensions is the GNU compiler,
GCC. Many of these extensions are used in systems headers on platforms that use GCC as
the system compiler, for instance Linux.

© 1992-1997 Knowledge Software Ltd Page 66

The Open Systems Portability Checker supports the extensions available on both of these
platforms. The-EXtensions option can be used to specify which platform extension
needs to be supported while processing a particular translation unit.

Some compilers also support additional characters in identifiers. The-IDStart option
can be used to specify which characters may occur at the start of an identifier. The
-IDFollow option can be used to specify which characters may occur within an identifier.
The dollar, ‘$’, character is the most commonly supported additional character in identifiers.

5.13 c89

The POSIX.2 standard specifiesc89as command used to compile C source programs. This
name was chosen because it did not clash with thecccommand. On most systems the,c89
command, likecc, acts as a driver for the various components of the compilation and linking
process.OSPCalso contains ac89command, implemented as a shell script, that provides
a front end ontomccandmcl. The syntax follows that given in section A.1 of the POSIX.2
standard.

5.13.1 c89 options

-c Compile but don’t link

Compile (perform static checking on) the source file, leaving the .kic file, but don’t attempt
to link (cross unit check) it.

-g Add symbolic information

mcc ignores this option, since the .kic files already contain full symbolic information. The
flag is passed to the linker and assembler (if any .s files have been given.)

-s Strip symbolic information

mcc currently ignores this option, but if specified the linker removes all non-essential
information at link time.

-o <filename> Specify output file

Send output to the named file, rather thana.out

-D <name><[=value]>Define macro

D <name> as if by a C language#define directive. If <=value> is omitted, a value of 1
is used. The-D option has lower precedence than the-U option. Hence if the same <name>
is used both in a-D and a-U option on one command line, <name> will be undefined,
regardless of the option ordering.

© 1992-1997 Knowledge Software Ltd Page 67

-E Preprocess to stdout

Copy C language source files to standard output, expanding any preprocessing directives.

-I <directory> Add include path

-l <library> Search the <library>

The Library namedlib<library>.a will be linked into the new interpreter (mceoption
only) when linking (cross unit checking) is selected.

-L Change library search path

-O Optimize

Generate more efficient executable code (only really of use if the dynamic checker is to be
used).

-U <name> Undefine macro

Remove any initial definition of the macro.

5.13.2 c89 file types supported

As well as acting as the interface for compiling C source programs,c89 can also handle
files with the following extensions:

file.c A C language source file.
This will be processed bymcc to producefile.kic .

file.s An assembler file
The file is passed to as, to the host assembler, producingfile.o .

file.a A host library of objects
This library will be linked into the new interpreter (mceoption only),
and the users application when it is built.

file.kic An intermediate code file.
This will be passed tomcl if linking (cross unit checking) is specified.

file.klc A linked intermediate code file.
This will be passed tomcl if linking (cross unit checking) is specified.

file.o An object file.
Will be linked into the new interpreter (mceoption only) if linking is
performed.

© 1992-1997 Knowledge Software Ltd Page 68

5.14 Summary of options

Those options marked with a star* apply to usingmcc in conjunction withmce, the dynamic
checker.

Align <type>=<bytes> Specify byte boundary for type

APIusage Generate info on API usage

ARithrsh Right shift (>>) to be arithmetic

ASsert <predicate>(name) Predefine an assertion (System V.4)

BIGendian Indicate order of bytes in a word

BITLohi Bit-fields allocated lo-bit to hi-bit

BITOverlap Can bit-fields share storage with previous field

BITSigned Plain bit-fields to be signed

CHARConst Format of multi-char character constants

CHARSet Source character set (ascii, ebcdic)

CHECK Perform syntax & semantic checks only

CHECKId <filename>
CHK <filename>

Specify an ident checking filename

CODES <option> Switch on the specified coding standard

CONDErr <filename>
CErr <filename>

Specify an conditional error filename

COnfig <tag>=<filename>
CFG <tag>=<filename>

Specify a configuration filename

D #define

DETail Display detailed help information

ECHO <text> Echo text to standard output

ERRfile <filename> Specify file containing error messages

ERRNumbers Give OSPC internal error numbers with messages

EValorder <dirn> Specify order of expression evaluation

EXtensions Enable language extensions

FNAMEChar Specify valid filename characters

FNAMELen Maximum length of a filename

Forgetall <option> Forget all arguments of option given so far

HEADers <filename> Specify file containing valid system header files

HELPModify <modifiers> Set modifiers for displayed help

HCEXcept* Mark a system header as not being host compiled

HCI * Host-compiled attribute inherited?

HCLIb * Is the system library to be host compiled

© 1992-1997 Knowledge Software Ltd Page 69

HDRsuppress Suppress warnings while processing system headers

HOSTComp* <filename>
HC <filename>

Mark a header as being host-compiled

I <path> Specify directory to search for#include

IDent Check declarations against reserved identifier list

IDFollowchars Characters that can occur in an identifier

IDStartchar Characters that can start an identifier

INTErsperse Intersperse listing with generated code

INTrep Integer representation (1cmp, 2cmp, smag)

LIMits <identifier=value> Set limits

LINT Do Lint like checking

Listing Generate a listing file

LOGfile <filename> Specify a log file name

MAPfile Generate a .map file

MAXErrors Specify maximum number of errors

MAXWarnings Specify maximum number of warnings

METrics Generate software metric information

MISCId Generate a platform specific id file

MODsign Sign of result of signed division

NAMelength Internal identifier character significance

NAMETrunc Internal name truncation length

Nomsg <errnum> Suppress a specific error number

OP <path>
OUTPUTPath <path>

Specify output path for all output files

OPTimize* Do code optimization

OSPCDir Set directory, relative to source, in which to write .kic output

Output <filename> Specify the output filename

PPlist Produce preprocessed listing file

PRAGma <name> Specify pragma supported by platform

PREInclude <filename> Preinclude<filename>

PRINTFspec <specification>Conversion specifiers supported byprintf

PSId <filename> Specify psid file

PTRScalar Is conversion between pointer and same sized scalar ok

Quiet Quiet mode

RAnge Switch on pointer range checking

REFerences Give standard reference on error messages

REMark Comment option

© 1992-1997 Knowledge Software Ltd Page 70

SCANFspec <specifiers> Conversion specifiers supported inscanf

SHEnd <string> Execute string before termination

SHStart <string> Execute string before compilation

Size <type>=<bits> Specify type size in bits

SOurce <platform>
SRC <platform>

Select source platform

SQL <level> Enable the processing of embedded SQL

SQLV <vendor> Specify the vendor dialect of SQL

SRCProfile <profile> Select an additional source standard profile

STandard Adhere rigidly to the ISO C standard

STACKDescend* Ascending or descending system stack

STDHdr * Use standard headers before system headers

STRuct <filename> Read structure information from given file

SUMmary Summarise the errors detected

SUppresslvl Suppress messages below given level

SUWrap Signed/unsigned conversions representable

TABwidth <width> Set the number of spaces indented by the tab character

TArget <platform>
TGT <platform>

Select target platform

TGTProfile <profile> Select additional target standard profile

TRace Trace reading of (config, include, input, profiles, options or
memory)

Unsignedchar Plain char to be unsigned

Verify Verify order of evaluation of expressions

VIA <filename> Specify control file to read further options from

XCasesig Is case significant in external names

XNamelength
XL

External name significance

© 1992-1997 Knowledge Software Ltd Page 71

Chapter 6

Conforming to an API

API’s (Application Program Interface) have become the method by which vendors define
the software interface to their products. The product could be a piece of hardware, a third
party library or even an operating system.

Users of applications often need to know which API’s an application relies on (for instance
when purchasing hardware and software separately). Managers of development teams
would probably like to know that only the defined API is being used and that the interface
rules laid down in the specification are being followed (to reduce the likelihood of their
product becoming tied to a particular version, or vendors implementation of an API).

An API specification defines the services that needs to be provided and how those services
should be accessed. Here we are interested in checking how the services are accessed from
the users source code.

6.1 What access methods might an API specify?

Information can be passed through a programming interface via function calls, or external
variables. To hide implementation details symbolic names (usually macros, sometimes
enumeration constants) are often used to represent special numeric values,typedef‘s are
used to hide implementation types and structures are used to hold an aggregate of variables
in one object.

To be of use the API must define more than the C syntax. It must define the properties of
these names and the services they provide. For instance the externalxyzrepresents a status
flag set by theabc function and can take on any of the values given by the macrosA, B or
C.

The names of these functions, objects, macros and types are defined in one or more header
files, to be included within the developers source code. The names of these header files and
their known content is another part of the specification that can be checked.

6.2 Which API’s are used by an application?

Two things need to be done to answer this question:

1 Scan the applications source looking for all uses of external identifiers.

© 1997 Knowledge Software Ltd Page 73

2 A database of API’s and the identifiers they define against which identifiers used in
an application can be matched needs to be made available.

All references to external identifiers are matched against the contents of the API database,
or other parts of the application (one unit may refer to an identifier defined in another unit,
not an API). A match against an identifier contained in an API flags that API as being used
(cases where different API’s define the same identifier are rare and can usually be resolved
by looking at the context, i.e., included headers and the use made of the identifier).

Identifiers that are not contained in another unit of the application, or the API database are
regarded as referring to an unknown API (they could equally be referring to vendor
extensions of a particular API).

6.2.1 Optional components

An API is sometimes broken down into core and optional components. For instance ODBC
has a core and two optional levels; the real time portion of POSIX has 16 optional
components. The availability of these components can be tested for using feature test
macros within the application source code.

To be useful, any report of API usage has to list those optional components of an API that
are used by the application.

6.3 Are the interface conventions obeyed?

It is no good making use of the facilities provided by an API if the interface specification
is not followed. The whole purpose of an API is to isolate implementation details from the
application. An applications that does not follow the specified interface is likely to have
problems when using a new version of a library implementing that API, or the application
is moved to a different platform.

So as well as finding out which identifiers are used, it is also necessary to check that they
are used correctly.

6.4 Interface requirements specified in API’s

API’s specify a number of different requirements for correct usage. Commonly seen
requirements include:

1 Types of functions and objects

2 Function arguments

a) Symbolic names must be used

© 1997 Knowledge Software Ltd Page 74

b) Types of arguments must be compatible with a defined type

3 Function return values, or external object values

a) Value has a properties, i.e., is positive, is negative

b) Value may only be compared against symbolic names, or particular numeric
literals

4 Feature test macros

a) Used to check availability of optional constructs

5 Object types

a) No requirement that the type be scalar

b) Fields available in structs

c) No requirement on layout, or ordering of fields

6 Identifier properties

a) Symbolic name need not evaluate to a compile time constant

b) Symbolic name must be implemented as a macro

c) Name reserved for future use

7 Headers

a) Must be included

b) Inclusion reserves certain names

6.5 Function calls

6.5.1 Function arguments

The calling interface to some system service routines specifies symbolic values for one or
more of the arguments. These symbolic values, implemented via macros, expanding up to
implementation defined values. It is usually possible for a developer to find out the value
of these symbols on a particular implementation and substitute the actual value, commonly
used, for the symbolic name. Prior to the standardization of many API’s it was common
practice for numeric literals to be used.

© 1997 Knowledge Software Ltd Page 75

Part of the API profile information specifies which functions must take symbolic names as
particular arguments.OSPCuses this information to flag those calls that fail to obey the
specified calling convention.

In:

#include <stdio.h>

fseek(file, 0, 0) /* 3rd arg should be SEEK_SET */

the third argument should have been from the setSEEK_SET, SEEK_CURor SEEK_END.

In some cases symbolic constants may be or’ed together to specify a combination of values.
OSPCknows which symbols may be so joined and which may not.

#include <locale.h>

setlocale(LC_CTYPE | LC_TIME, str1);
setlocale(LC_CTYPE + LC_TIME, str2); /* may give different

result to | operator */
setlocale((LC_CTYPE | LC_TIME) | LC_NUMERIC, str3);

Some API’s have more complicated requirements. For instance the POSIX functionopen
may take one of three values (O_RDONLY, O_WRONY, O_RDWR) combined with zero or
more other values (O_APPEND, O_NONBLOCK, O_NOCTTY, O_TRUNC, O_CREAT,
O_EXCL). An API checker must ensure that the argument is created using the correct
boolean or of these macros.

The only operators that may be applied to symbolic names are bitwise and,&&, bitwise or,
|, and the unary not̂operators. The use of any other operator will be flagged. The ternary
operator?: may be used, since it returns a single value.

Sometimes the numeric literal0 (zero) is allowed, instead of a symbolic name.

Statically checking a variable passed as an argument is substantially more difficult. It
requires full flow analysis to track the symbols assigned to that variable. The current release
of OSPC does not perform such analysis in this context. It is assumed that the variable
holds a correct value.

API’s also define the types of the function argument. Provided the host compiler supports
function prototypes the arguments given in calls to API functions will be checked at compile
time. The C standard permits the passing of an argument of a different arithmetic type by
requiring the compiler to insert a cast to the required type. For instance ifsize_tmay have
anunsigned longtype, passing an argument of typeint will work because of the implicit
cast inserted by the compiler. Thus the developer does not have to worry about inserting
casts tosize_tfor all appropriate arguments.

Passing an incorrect non-arithmetic type will cause the compiler to generate a compile time
error (it is required to issue a diagnostic by the C standard). It is useful for an API checking

© 1997 Knowledge Software Ltd Page 76

tool to check that the arguments are compatible with the declared parameters,OSPCdoes
this checking.

Some company coding standards require that arguments passed to functions are ‘strongly
compatible’ with the argument type. That is the named types must matched. But this is a
coding standards requirement, not an API requirement (because of the implicit casts inserted
by the compiler).

6.6 Using the value of identifiers

Standards often restrict the values returned by calls to API routines to a range of values.
This range of values may be expressed numerically, but is often expressed as a set of specific
symbolic names. Also the values returned sometimes have properties, rather than specific
values, i.e., is positive.

In the code fragment:

#include <stdlib.h>

int i;
char *c1, *c2;

/* ... */

while ((i == getchar()) != ‘a’)
/* ... */ ;

if (strcmp(c1, c2) != 33)
/* ... */ ;

the use ofgetcharin a comparison against an exact value is reasonable. This function returns
a range of possible values and comparing for the appearance of one of these values is a
common programming device. In the second case the exact comparison ofstrcmpis more
suspect. The C standard specifies that this function returns zero, a negative value or a
positive value. The number33 is positive. However, there is no guarantee that all
implementations of thestrcmpfunction will choose this value to return in the positive case,
or even that the same value will be returned from all calls. In this examplemcc will flag
the comparison against33and suggest an alternative (a relational comparison against zero).

The possible return values of functions and the range of values that may be assigned to
objects contained in system headers forms part of an API profile.

In:

#include <errno.h>
#include <stdlib.h>
#include <time.h>

int i;
char *c1, *c2;
struct tm time_now;

/* ... */

© 1997 Knowledge Software Ltd Page 77

errno = 99; /* not a symbolic constant */
/* ... */

errno = EMTIMERS; /* only defined in POSIX.4 */
/* ... */

if (time_now.is_dst == 1)
/* ... */ ;

the first assignment toerrno will be flagged (zero is the only defined numeric literal that
may be assigned to this object). The second assignment is permitted, provided the optional
POSIX.4 macro is available (in this case a feature test macro should have been used to check
the availability).

API’s do not usually define many scalar types. Amore common occurrence arestructtypes.
The members of these types occasionally have restrictions placed on the values that they
can take. For instance the tagtm, defined in<time.h> , contains a field that denotes the
current setting of daylight savings time. This field can be a non zero positive value, zero
or negative. The C standard does not define the positive or negative values used, rather it
is the property of being positive or negative. So the final comparison, in the above example,
is not testing for the positive property, rather it is testing for a particular positive value. This
test may work under one implementation, but it is not portable. The comparison should be
changed to greater than zero.

API functions may also return values. These values may represent individual values or
particular properties, such as positiveness. For instanceprintf returns the number of
characters printed or a negative value if an error occurred.

if (printf(“abc”) == 3) /* OK */
;

if (printf(“xyz”) == -1)
;

The first example is checking the number of characters written against the expected value,
as allowed by the API. The second is assuming a particular value for the property of
negativeness. One implementation may return-1, another-2, another an arbitrary negative
value. The correct test would be:

if (printf(“xyz”) < 0)
;

here the relational operator is testing for the negative property.

Agray area of checking involves functions that return a limited range of values. For instance
thetm_secfield of astruct tmmay take on values between 0 and 61. Is the following code
fragment relying on an implementation defined extension, or is it a coding error?

if (t.tm_sec > 61)
;

OSPCassumes that it is a coding error and flags this construct.

© 1997 Knowledge Software Ltd Page 78

Like arguments, return values may sometimes be represented by symbolic names.

if (fflush(file_ptr) == EOF) /* OK */
;

if (fflush(file_ptr) == 1)
;

The second example is incorrect because it assumes a value for the symbolEOF.

Also relational operators may not be used in those cases where all the values returned by
an API function are symbolic.

6.7 Optional constructs

6.7.1 Feature test macros

POSIX specifies some services as being optional. It also suggests a technique for using
such optional services; the feature test macro. The idea is that a predefined macro can be
used to check whether the services are available on a given platform.

#include <unistd.h>

#ifdef _POSIX_SAVED_IDS
setuid(/* arguments */);

#else
#error setuid may not be supported

#endif

#ifdef _POSIX_JOB_CONTROL
func(WUNTRACED);

#else
#error WUNTRACED not supported

#endif

In this example the_POSIX_SAVED_IDSfeature test macro is used to protect the call to
setuid. This macro will have been#define‘d in the header<unistd.h> if the service is
available on the given platform. In some cases service routines take optional arguments,
provided the option is supported. In the above case theWUNTRACEDis only available if
the_POSIX_JOB_CONTROLfeature test macro is defined.

OSPCwill check all uses of identifiers declared in standard headers to ensure that they are
protected by feature test macros (where necessary). Those that are not protected will be
flagged.

All forms of checking macros for existence are supported, as well as multiple conditions.

#include <unistd.h>

#if defined(_POSIX_SAVED_IDS) || defined(_POSIX_JOB_CONTROL)
func()

#else
#error what do we do now?

#endif

© 1997 Knowledge Software Ltd Page 79

Note that only the macros actually used in calculated the truth of the#if expression are
remembered. In the above case, if_POSIX_SAVED_IDSis defined the expression is true
and the right hand side of the|| operator is not evaluated. Thus any use of identifiers within
the#if arm that depend on the_POSIX_JOB_CONTROLfeature test macro being defined
will be flagged, even though_POSIX_JOB_CONTROLmay be defined. The user will have
to split the test up into multiple#if‘s in this case.

The checking is based on simple existence and also applies to identifiers in the#elsearm.
The assumption being made that if a feature test macro is being used, it is probably being
used correctly.

Optional constructs may be any identifier declared or defined by the API.

Developers that are unaware they are using optional constructs have set a future trap in the
porting of their application. Users of packages also need to be aware of any optional
constructs required by an applications when specifying hardware, or third party libraries.

6.8 Use of headers

6.8.1 Valid headers

A common method of accessing services provided as an extension to a standard is to use
non-standard headers.OSPC checks the name of every system header included by the
source code against a list of known, defined standard header names. Any unrecognized
system header name is flagged.

#include <stdio.h>

#include <vendor_extension.h>

#include <X11/widgets/abc.h>

#include <X11/default/extension.h>

/* ... */

Herestdio.h is a permitted system header, whilevendor_extension.h is not. In
the case of X windows there are entire directories whose contents are considered reserved,
irrespective of the name of the file. So the checkers life is more complicated.

If a header is not recognizedOSPC will check its database of known header names.
Associated with each header in this database is a list of platforms known to support that
header. If a match is found a list of the platforms supporting the header is given. Thus
providing some helpful information for the developer.

Headers are the means by which identifiers defined by in API may be made visible to the
application. In some cases the header must be included because it contains information that
cannot be obtained elsewhere (for instance the values chosen by the implementation for

© 1997 Knowledge Software Ltd Page 80

symbolic names). Sometimes it is possible for a developer to declare a subset of the API
without including the header.

Headers are necessary if symbolic macros and types are referenced from the application
source. For instance in the example involvingfseekabove the headerstdio.h needs to
be included so that the compiler can obtained the value of the macroSEEK_SETchosen by
the implementation.

An example where an API header need not be include is thestrerror function. It is ok to
declare that function explicitly, rather than including thestring.h header. Because its
API specification only uses C predefined types,char *strerror(int errnum). However,
memsetcould not be so declared in the users source without including thestring.h
header (if the header is included why explicitly declare it anyway). This is because the
declaration ofmemsetneeds a type from that header,size_t. The developer may declare
memsetwith a particular predefined type instead ofsize_t, but that will only work on
implementations where that type is used to representsize_t. (The C API specifies the type
void *memset(void *s, int c, size_t n)).

6.8.2 Incorrect header contents

A problem that sometimes arises with API headers is that they do not accurately reflect the
requirements contained in an API. Fortunately the most common problem, incorrectly
specified argument arithmetic types, does not affect the performance of a checking tool. If,
for instance, a vendors version ofstring.h declared the third argument ofmemsetto
take anunsigned intargument the interface is not broken from the applications point of
view, providedsize_tis also declared to have typeunsigned int. The compiler vendor is at
fault for not upgrading its headers to conform to the C standard (first published in 1989 by
ANSI and as an ISO standard in 1992).

Other problems often seen include syntax violations (text after a#endifnot included within
comment delimiters for example) and incorrect numeric value for macros (floating point
values inaccurate in the last digit).

6.9 Use of API defined types

An API may define types to allow implementations to adapt themselves to different
hardware (usually different sized scalar types) or to combine together similar variables in
one place (a structure).

API’s rarely define the ordering of fields within a struct, although implementations are
usually given liberty to add additional fields to structs. Applications that rely on ordering
of fields or make use of implementation specific fields are going beyond the specification
given in the API.

© 1997 Knowledge Software Ltd Page 81

6.9.1 Struct fields

The amount of information returned, or passed to, API functions can sometimes be larger
than will fit in a scalar type. In these cases standards definestruct types to hold this
information. They also specify the names of fields expected to be present in these structures.
On some platforms thestructs defined in header files often include extra fields that are not
defined in the standards (they are platform specific fields). Such behaviour is permitted by
most standards and is a recognized method of providing extensions. But software that
references these fields is making use of extensions and its conformance to standards is
reduced. It also becomes tied to a particular platform, and has reduced portability.OSPC
checks that all fields referenced in an object having the type of one of these standardstructs
is defined as existing in the standards supported by the target platform.

Acommon example is thedirentstructure defined in<dirent.h> . The POSIX.1 standard
specifies it must include the memberd_namewith type char [] . XPG goes further and
specifies that the fieldd_inomust also be present. However, if we look at the documentation
for the Sun 4 we find the following structure defined:

struct dirent {
u_long d_ino;
short d_reclen;
short d_namelen;
u_long d_name[MAXNAMELEN + 1];
};

It is perfectly valid for the extra fields to be defined by a platform. But the extra fields are
not portable.

So in the code fragment:

#include <dirent.h>

struct dirent cur_dir;

/* ... */

if (cur_dir.d_name[1] == ‘a’) /* Conforming POSIX.1 */
;

if (cur_dir.d_ino == 0) /* Conforming XPG */
;

if (cur_dir.d_reclen == 4) /* Valid on Sun 4 only */
;

each access tocur_dir uses a successively less conforming field name.

The field names of structures defined by standards are held in the standards platform profile
directory, along with the names of the fields defined by those standards. In the example
given above XPG is a superset of POSIX.1. Thus its platform profile references POSIX.1
and simply includes that functionality that is supported in addition to POSIX.1.

© 1997 Knowledge Software Ltd Page 82

6.9.2 struct initialisation

Initialization of struct objects, via an initialiser, is one example where an ordering of fields
is implied. So the construct:

div_t local_var = {1, 2};

must be explicitly expanded out to (assuming the above assumed this order):

div_t local_var;

local_var.quot=1;
local_var.rem=2;

6.9.3 Type need not be scalar

An API occasionally leaves the specification of a particular type wide open. An example
is thefpos_ttypedef specified in the C standard, which simply states “... which is an object
type capable of recording all the information needed to specify uniquely every position
within a file.” On many systems this type is a scalar. So the code:

#include <stdio.h>

fpos_t *position1,
*position2;

/* ... */

if (*position1 == *position2) /* comparison only legal if
fpos_t has scalar type */

/* ... */

works. But C does not allow the== operator to be applied to struct types. This code
fragment would fail to compile on a platform that definedfpos_tto be a struct (in fact there
is no portable way of comparing two objects of arbitrary type for equality).

6.10 Symbolic name need not be constant

API’s use symbolic macro names to represent values that may vary between implementa-
tions. Developers sometimes assume that because macros are used the value will be a
constant literal. This is sometimes not the case. For instance, of all the macros used to
describe properties of the floating point representation, in the C standard, only one,
FLT_RADIX, is required to be a constant expression. On many implementation the other
macros are indeed constant expressions, but they are not required to be.

The code fragment:

#include <float.h>

int number[FLT_DIG];

© 1997 Knowledge Software Ltd Page 83

relies onFLT_DIG, the number of decimal digits in a number that can be exactly represented
in a float, being a constant expression. If it is an expression that must be evaluated, as above,
at runtime the compiler will not be able to compile the application.

6.11 Declaration/Definition checking

Many standards define a large number of reserved names. These names may be reserved
for several reasons:

· For use by an application. The names are functions, objects, macros and typedefs
given in the standard.

· For use by an implementation. The names may be used by an implementation, for
housekeeping purposes necessary to perform the required API functionality.

· For use in future versions of the standard. In this case names beginning or ending
with certain sequences of characters are usually reserved.

Unwitting use of one of these reserved names now, may cause the contents of a source file
to clash with a new version of an API library, an API on a different platform, or a future
revision of the standard.

Within each standards profile there is a file containing a list of names reserved by that
standard. On encountering a declaration of such a name, in the appropriate namespace,
linkage and scope, a message is generated.

In the example:

#include <string.h>

static int strange;

int stream;

int __str_stuff;

/* ... */

the use of the headerstring.h causes all identifiers, starting withstr and having file
scope to be reserved. Objects with external linkage beginning withstr are always
reserved, since they might clash with a routine linked in from the system library. File scope
identifiers beginning with__ (double underscore) are always reserved for use by the
implementation.

The chapter on understanding the C standard (in the Understanding Standards manual)
provides a fuller description of the conditions under which names may become reserved.

© 1997 Knowledge Software Ltd Page 84

The-CHECKId option may be used to specify an ident checking filename. The named file
is taken as the file containing a list of reserved identifiers. Multiple ident files can be
specified, and identifiers will be checked against each of them in turn.

If the file cannot be opened, or is not in the correct format an error message is displayed
and no checking for reserved identifiers is performed.

mcc prog -check PROFILE/standard/ansic/ident

6.11.1 Exceptions

Standards tend to reserve identifier without regard to the requirements of other standards.
Thus from time to time, one standard will define an identifier that is reserved by another
standard. X11 is a case in point. Here identifiers beginning with_X are recommended for
internal use. This clashes with requirements contained in the C standard. To help solve this
problemOSPC allows exception identifiers to be specified (this information is stored in
the reserved identifier database for each standard).

For instance the X11 reserved identifier database specifies that all names beginning with
_X should not be flagged.

The exceptions list is checked after an identifier matches against the list of reserved
identifiers. If it also matches against the list of exceptions, no warning is given for that
identifier’s declaration or definition.

Like reserved identifiers, exceptions also require the context in which they are to be treated
as exceptions.

6.11.2 Using #undef

It is possible for the user to ‘win’ back names that have been reserved by a standard. The
#undef preprocessing directive undefines a previously defined macro. Thus it can be used
to ‘make safe’ names that are required for use in the user’s program. The#undef will
remove any possibility of a macro defined in a system header causing a replacement in the
users source (provided the#undef occurs after all the system headers have been included).

For example, any name beginning withstr is reserved by the C standard:

#include <string.h>

#undef string1

static int string1;

The#undef protects the definition ofstring1 against any macro of that name that may
have been defined in<string.h> .

Note: Some standards define names that are so ‘strong’ that they cannot be ‘won’back with
#undef . This topic is discussed more fully in the manual explaining standards.

© 1997 Knowledge Software Ltd Page 85

6.12 Reserved names

API’s often reserve specific names for future releases of the specification and to allow
implementations to add additional names to headers.

The presence of these reserved names effectively constrains an application from defining
identifiers with those names. An application containing such a definition could fail to
compile on certain platforms, or with later versions of the API (because of duplicate or
inconsistent definitions).

Some reserved names are easy to avoid by the application developer, for instance those
starting with double underscore. Others might be considered more contentious. For instance
all macros starting withE (capital E) are reserved by the C standard if the headererrno.h
is included, and all external identifiers starting with the three charactersstr are reserved in
all cases by the C standard.

Experience has shown that applications often contain definitions of many identifiers whose
names clash with those reserved by API’s. The definitions could be changed to use
alternative names, but in many cases the effort involved is disproportional to the time and
effort needed to modify existing code.

Insisting that all names defined by an application not clash with those reserved by the API’s
used is impractical. It could mean having to edit tens of thousands of lines of code.
Applications vendors might undertake not to add new names that are reserved and attempt
to migrate away from any existing reserved names that are being used.

6.12.1 Platform specific identifier files

Most computing platforms provide services that go beyond those specified in standards.
Software that makes use of these platform specific services had better make sure that it does
so in a configurable manner.

One component of the platform profile information used byOSPCis a list of those macros,
objects and functions that are specific to a given platform. Most platform profile informa-
tion relates to the target platform. In the case of the platform specific identifier information
it relates to the source platform. After all, the software already runs on the source platform
and if it is making use of services specific to that platform it is unlikely to port directly to
the target.

#include <memory.h>

/* ... */

bcopy(/* parameters */);

memccpy(/* parameters */);

© 1997 Knowledge Software Ltd Page 86

In the first examplebcopy is a method of copying between two objects on Sun platforms.
This function does not exist in any standards, or even in a Sun header (it is default declared).
It ought to be replaced bymemcpy(which is not available on Sun running SunOS 4.1).

The functionmemccpy is again Sun specific. Its usage should be protected by a Sun feature
test macro.

The types of warnings generated for platform specific identifiers will vary depending on
whether the software is being check on the source platform or some other platform.

In the case of the source platform any header files that are include will contain declarations
of the relevant identifiers. In the case of other platforms (perhaps the target) the included
header files may not exist or, if they do, may not contain declarations of all of the identifiers
that existed on the source platform. In the latter case it is likely that a syntax or semantic
warning will be generated on any use of the source specific identifier. If it is a function call
the user may have to wait until link time to see the message (unresolved external).

6.12.2 Identifiers specified to have type related properties

The C standard defineserrno to “... expands to a modifiable lvalue that has type int ... It is
unspecified whether errno is a macro or an identifier declared with external linkage.” This
is an example of an API defining properties of an interface rather than C syntax for its
implementation. The POSIX standard says “... which is defined as extern int errno;” An
implementation specification.

This kind of API object specification, using properties rather than C syntax is not very
common.

Ideally an API checking tool would know about the different properties defined by an API
and flag discrepancies. From the tools point of view such special cases are just that, special
cases. In the example above it was reasoned that few applications rely solely on the C
standard, most also include POSIX (or an API based on POSIX). So checks suggested by
the specification given in the C standard is not carried out byOSPC.

6.13 Identifier specified by several API’s

Sometimes a newer API will add functionality to an interface defined by an earlier API, or
define what was previously undefined behaviour. For instance the C standard says that the
renamefunction may be used to change the name of a file. But C has no concept of directory
structure, so it does not include any specification for handling directories, it assumes a flat
file system. POSIX defines a directory structure and adds to the specification to rename to
describe how directories are to be handled.

It is not always possible to deduce the use being made of an API interface from static analysis
of the source.OSPCtakes the view that if an identifier from an API is referenced then that
API is used, irrespective of the number of API’s involved.

© 1997 Knowledge Software Ltd Page 87

6.14 Can all referenced API’s be detected?

No, they cannot. Consider the case of an API that only defines macros and types. Let us
assume that information on this API is not available toOSPC. Who is to say that the
included header, used to access the defined names, is not part of the application, rather than
an API (OSPC makes the assumption that any header that appears within chevrons is a
system header, so the use of such a header would be flagged as an unknown resource)? An
example of a header that only contains macros and typedefs isstddef.h , from the C
standard. An API rarely defines a single header containing macros and typedefs. Such
headers are usually part of a larger collection of interrelated headers.

In the case of objects and functions their definition is contained in a library, not in the source
making up an application. Such a library has the opportunity to modify an object and
functions may access host specific information. So it is much harder for a user to duplicate
the functionality in an application library.

Does it matter that use of an API may go undetected? Perhaps not. The developer has the
option of taking the headers containing the macro and type definitions and making them
part of the application source tree (if they are not available on a given platform). Of course
the developer then has to take over responsibility for ensuring that the definitions are correct
for each new platform.

In the ideal case theOSPCdatabase contains information on all API’s that an application
uses.

6.15 Information output by an API checking tool

There are two types of files generated byOSPC:

1 .api files. This file contains information obtained from scanning a single source file.

2 .alg files. This file is created by collating all of the .api files corresponding to the
source making up a complete application.

Being able to output a list of applicable API’s relies on having a database of information
about what each API contains. This is turn requires an API to be documented, which,
unfortunately is not always the case (X11 being an example, where even the headers
provided can vary between platforms, let alone the header contents).

6.15.1 Information summary

Once all of the source code used to build an application has been analyzed the information
can be collated to give a summary of API usage. In the case ofOSPCthis summary, written
to a .alg file, contains the information:

© 1997 Knowledge Software Ltd Page 88

1 API

a) All API’s referenced

b) Optional components referenced

2 Unknown resources used

a) External identifiers referenced but not specified by a known API

b) System headers included, but not specified by a known API

3 Violations of known API’s

a) Type of violation and number of occurrences

b) Reserved identifiers used, and number of occurrences

6.15.2 Use of identifiers of unknown status

Once the entire application has been processed all referenced identifiers are known.
Resolving these identifiers against those defined by the application and those defined by
the known API’s may leave some unaccounted for.

These unaccounted identifiers are assumed to belong to either an unknown API or extensions
to a known API.

In the case of variables and macros there will be a declaration in one of the included headers.
The name of the header may give clues to the status of the identifier.

Functions need not be declared prior to use. In this case the compiler will create a default
declaration ofextern int f(), wheref is replaces by the name of the function. So there may
not be a header name to refer to for guidance. Once again incorrectly written headers can
confuse the analysis. It is not unknown for vendors to supply headers with some function
declarations missing, even though code implementing that function is available in a library
that can be linked against.

A checking tool can do no more than list identifiers whose status is unknown. This list may
contain hints as to their likely status, for instance by giving the name of the header in which
any declaration occurred.

6.16 Understanding the output messages

The following is a list of warnings that can be generated, along with an explanation of why
are given and what might be done to stop them appearing. Switching on the-REF option
will include any available API references to be given with the warning.

© 1997 Knowledge Software Ltd Page 89

6.16.1 Arithmetic performed on object taking symbolic or discrete values

Unless an object takes a range of known values it makes no sense to perform arithmetic
operations on it. The user is relying on information not required by the API specification.

errno++;

or,

errno -= 4;

both make little sense.

Of course it is possible to come up with API specifications thatAPIdeducewould flag as
non-conforming (i.e., discrete values separated by known, constant, offsets). To date no
such API specifications have been encountered.

6.16.2 Assigning an out of range value

As well as defining a list of symbolic values API’s sometimes define a range of values that
an object may take. Assigning a value outside this range (unless it is an allowed symbolic
constant) will cause this warning to be given.

time.tm_min = 99;

6.16.3 Assigning symbol not given in standards profile

The list of symbolic constants that an API defines is known. A subset of this list includes
symbols that may be assigned to objects Here a symbolic constant not on this sub-list is
being assigned.

A very likely cause for this warning to occur making use of an extension to the API.

errno = E_OOOPS;

6.16.4 Assigning value not explicitly given in standards profile

An API may list a range of values, or properties, such as positiveness, that an object might
take.

If the value being assigned either falls within the bounds of the minimum and maximum
values possible, but is not within one of the explicit ranges. Or is one of the many values
having a specified property, i.e.,1 is positive. Then this warning is given.

the_time.tm_isdst = 1;

© 1997 Knowledge Software Ltd Page 90

6.16.5 Bad combination of symbolic constant: use X | Y | Z

The symbolic constants passed as an argument to an API routine have been combined in a
form not supported by the API specification.

fseek(cur_file, 0, SEEK_SET + SEEK_CUR);

6.16.6 Bit-wise operations may not be performed on this symbolic object

API’s often put restrictions on the values of symbolic constants, such that bitwise operations
may be performed on them. This warning is given when no such restrictions have been
specified by the API and bitwise operations are therefore not guaranteed to work.

flock_1.l_whence = (SEEK_SET | SEEK_CUR);

6.16.7 Comparison against a value not explicitly allowed in the API

API’s sometimes specify a possible range of values that can occur. But without specifying
that any of them may be explicitly mentioned. One such range are negative values. All
numbers less than zero are negative. But an explicit test against one of them is not a test
for the negative range.

This warning is given when a construct appear and the API specifies a range of values that
might take occur, but without allowing any one of them may be compared against.

if (dup(1) == 22)

6.16.8 Comparison against symbol not given in standards profile

The list of symbolic constants that an API defines is known. Here a symbolic constant not
on this list is being compared against. It is probably an extension to the API.

flock_1.l_whence = SEEK_BLK;

6.16.9 Comparison against value standards profile says cannot happen

As well as defining a list of symbolic values API’s sometimes define a range of values that
an object may take, and hence compared against. Comparing against a value outside this
range (unless it is an allowed symbolic constant) will cause this warning to be given.

if (pipe(fildes) == 2)

In this example the call topipe is only defined to return the values zero or one.

6.16.10 Dubious arithmetic performed on object taking symbolic or discrete values

Unless an object takes a range of known values it makes no sense to perform arithmetic
operations on it. The user is relying on information not required by the API specification.

© 1997 Knowledge Software Ltd Page 91

The reason for this warning is similar to the one given for the use of plus and minus
assignment operators. Using a multiplication or other operator is even more unlikely to
result in meaningful values.

errno *= 4;

6.16.11 Field ‘blah_blah’ of struct is not defined in the standard

APIs enumerate the members that a struct must contain. Vendors are usually given freedom
to add additional members. Code that references a member added by a vendor may compile
on one platform, but is unlikely to compile on another.

if (dir_info.d_off == 22)

The information provided by the vendor extension may not be available using the API
specification only. The application vendor will have have to explain to their users why they
have decided to make use of such an extension.

6.16.12 Header name not given in API

The name of the file between chevrons,< > , in a#includepreprocessor directive is not a
header name specified in any known API.

#include <vendorstuff.h>

Any header name enclosed in chevrons is treated as being a system header. headers nested
within system headers need not be flagged since they are part of the implementation.

Sometimes developers use chevrons to delimit include filenames, rather than double quote
characters. Such usage runs the risk of including an unexpected header on a different
platform. Double quotes must be used for non-system header files.

6.16.13 Incorrect symbolic constant used: need one of {X|Y|Z}

The argument being passed to an API routine is not one of the correct symbolic values
required. This warning often occurs because a particular argument requires more than one
symbolic value and only one has been passed.

file_tag = open(“abc”, O_APPEND);

6.16.14 Initialiser assumes a specific ordering of fields

An explicit initialiser has been given for an object ofstructoruniontype. Such an initialiser
must depend on the ordering of members within the object. Relying on such an ordering
is going beyond the API specification.

div_t local_var = {1, 2};

The solution is to explicitly assign an initial value to each member.

© 1997 Knowledge Software Ltd Page 92

6.16.15 ‘memchr’ library function needs type from header file

The user is declaring a function that is also declared in a system header, but is not including
that header. In most cases this usage is permitted by API specifications. But in the case
that causes this warning the identifier being declared refers to a type that is declared in that,
or another header. A declaration can be implicit or explicit:

1 A function is called with no visible declaration relying on the default declaration
required to be created by the compiler.

2 The developer gives an explicit declaration in the source code, without including
the appropriate header.

The correct way to gain access to the declaration is by including the header. It is very poor
programming practice to rely on default declarations and in this case creating an explicit
declaration in the source of the application does not have the desired effect.

void *memset(void *s, int c, size_t n);

Herememsettakes a parameter of typesize_t. The developer may know the type ofsize_t
on the current platform, but cannot know its type on all platforms.

The solution is to include the appropriate system header and delete the declaration.

6.16.16 Macro ‘blah’ is not always a constant

Macros defined to hold numeric values are not always required to be constant literals.
Although on many implementations they may have literal values.

char flt_digits[FLT_DIG];

6.16.17 Needs to be protected by the feature test macro _BLAH_

POSIX specifies that the availability of optional constructs may be tested for by using
feature test macros. This warning is given when an optional construct is used without being
protected by the appropriate feature test macro.

w_flags = WUNTRACED;

6.16.18 Nonsensical expression to assign to this object

This warning is similar to the one described above. The difference is that the object is being
modified by a simple assignment not an operator assignment.

obj = SYM_CONST + 2;

© 1997 Knowledge Software Ltd Page 93

6.16.19 Nonsensical expression to compare against this object

The expression being used to compare against an object contains operators that do not make
sense in this context (given the API specification).

if (stat_1.st_mode == (S_IRWXG + 1))

6.16.20 Should assign a symbolic constant, not a literal

The purpose of a symbolic constant is to give a name to a number, removing the need for
the user to know the actual value. Assigning a numeric literal is relying on information not
given in the API specification.

errno = 3;

6.16.21 Should assign one or more symbolic values, not literals

Only symbolic values may be assigned to the given object, possible occurring in bitwise
combinations.

stat_1.st_mode = 1;

6.16.22 Should compare against a symbolic constant, not a literal

The purpose of a symbolic constant is to give a name to a number, removing the need for
the user to know the actual value. Comparing against a numeric literal is relying on
information not given in the API specification.

if (errno == 9)

6.16.23 Should compare against one or more symbolic values, not literals

Only symbolic values may be compared against, possible occurring in bitwise combina-
tions.

if (stat_1.st_mode == 1)

6.16.24 Should use symbolic constants (one of X | Y | Z)

The argument to an API routine is not one of the symbols given in the list in brackets. In a
few commonly used routines programmers ‘know’ the value that ‘everybody’ uses and
substitute the numeric literal rather than using the symbol. Implementors are not required
to use ‘known’ values in their implementation.

fseek(cur_file, 0, 0);

© 1997 Knowledge Software Ltd Page 94

6.16.25 Symbolic values should not be used in relational comparisons

The purpose of a symbolic value is that the actual numeric value used can vary between
implementations. API specifications rarely define an ordering between the symbols. Use
of a relational comparison relies on properties of an implementation that go beyond the API.

if (flock_1.l_whence > SEEK_SET)

6.16.26 ‘blah’ is reserved for future use

Many standards define a large number of reserved names. These names may be reserved
for one of several reasons:

· For use by an application. These names are the functions, objects, macros and
typedefs defined by an API.

· For use by an implementation. The names may be used by an implementation, for
housekeeping purposes necessary to perform the required API functionality. They
may also be extensions.

· For use in future versions of the API specification. In this case names beginning or
ending with certain sequences of characters are usually reserved (POSIX reserves
all identifiers starting with two underscore characters, or ending in_t).

Unwitting use of one of these reserved names now, may cause the contents of a source file
to clash with a new version of an API library, an API on a different platform, or a future
revision of the standard.

In the example:

#include <string.h>

static int strange;

int stream;

int __str_stuff;

/* ... */

the use of the headerstring.h causes all identifiers, starting withstr and having file
scope to be reserved. Objects with external linkage beginning withstr are always reserved,
since they might clash with a routine linked in from the system library. File scope identifiers
beginning with__ (double underscore) are always reserved for use by the implementation.

The problem with this warning is that there tend to be lots of them. Editing all of the code
to rename identifiers can be a time consuming task. It may also involve issuing new
documentation or changing a defined internal user interface. Also in many cases the names
used are unlikely to clash with names introduced by standards committees in the future.

© 1997 Knowledge Software Ltd Page 95

This warning can also be given for API functions that are implicitly declared when a call is
encountered. Because the names of API identifiers is usually reserved. To prevent this
happening include the appropriate header file.

6.16.27 Using #undef

It is possible for the user to ‘win’ back names that have been reserved by a standard. The
#undefpreprocessing directive undefines a previously defined macro. Thus it can be used
to ‘make safe’names that are required for use in the user’s program. The#undefwill remove
any possibility of a macro defined in a system header causing a replacement in the users
source (provided the#undefoccurs after all the system headers have been included).

For example, any name beginning withstr is reserved by the C standard:

#include <string.h>

#undef string1

static int string1;

The#undefprotects the definition ofstring1against any macro of that name that may have
been defined in<string.h> .

Note: Some standards define names that are so ‘strong’ that they cannot be ‘won’back with
#undef. This topic is discussed more fully in the manual explaining standards (part of the
manual set that comes with the fullOSPC distribution).

© 1997 Knowledge Software Ltd Page 96

Chapter 7

OSPC cross unit checking

7.1 Introduction

The name of theOSPC tool that performs this role ismcl. The purpose of this tool is to
check for interface inconsistencies across multiple translation units. The major cause of
such inconsistencies are type incompatabilities. For instance an object declared as having
int type in one translation unit and havinglong type in another. In practice most warnings
refer to function declarations/definitions and arise as a result of forgetting to include the
appropriate headers.

Those users familiar with the compiler/link/execute process will recognise this tool as being
a sophisticated linker. Traditionally, linking is the process of joining two or more separately
compiled source files, to create an executable program. TheOSPCgoes beyond this task
and performs full interface checking.

Linkers, like compilers, have their own history and established way of doing things.Mcl
has been designed with prior art in mind and can accommodate the behaviour (some would
say deficiencies) of the well known linkers.

mcl performs three main functions:

1 It carries out type checking of declarations and definitions between translation units.
This is its main checking role within theOSPC.

2 It reorganizes .kic files into a form suitable for execution; the traditional linkers job.
This will only be of interest to those users who plan to execute the code generated
by theOSPCat some point.

3 It provides a method of joining multiple .kic and klc files into one file, deleting and
replacing translation units within a .klc file. This job might normally be carried out
by a separate utility, a librarian, on other systems.

If you are planning to execute your programs, having them processed bymcl is an essential
step. It is not possible to execute .kic files.

7.2 Using mcl

Mcl has the same user interface asmcc. Although the options available are different.

© 1992-1996 Knowledge Software Ltd Page 97

Linker Input and output files

Cross Unit Checker

KLC

KLC

KLC or KEC

LOG HRY

Command
line options

KICKLC CFG

To process a single file type:

mcl abc

This will causemcl to read the fileabc.kic , process it and generate a file called
abc.klc .

To check more than one file type:

mcl abc def ghi

As many files as will fit on the command line may be given. The name of the first file is
used to create the default full name of the klc file (in the above case the output file will be
calledabc.klc).

Mcl has a range of options that give the user control of the checking process. These options
may be intermixed with the filenames:

mcl abc -ref def -V

The full list of options may be obtained by typing:

mcl -det

or simply (for a list of those options most commonly modified):

mcl

Becausemcl does not work directly on the source code it is not possible to reference the
point in the original file, that is the subject of a warning or error message. The best that can
be done is to provide the name of the identifier involved and the names of the two files that
contain the inconsistent declaration, definitions or usage.

When performing cross unit checks it is necessary to have a slightly different view point
than that used for checking single source files. This need arises because the rules for type
checking across translation unit in C are not the same as those within translation units. The
cross translation unit type compatibility rules can be looked on as a super set of those used
within a single translation unit. One possible simplification is for the developer, to only
concern themselves with the source code compatibility rules and ignore the extra sophisti-
cation (some would say danger) of the additional freedom allowed at the cross unit level.
But be warned, some declarations for which a warning message is expected may not in fact
generate one. A description of the cross translation unit rules is given in the manual on
understanding standards.

Inside a single source file ‘name equivalence’ is used. That is two types are the same if
they have the same name; for scalar types this rules is extended somewhat. Across
translation units type checking is by structure.

© 1992-1996 Knowledge Software Ltd Page 99

Because of its complexity, the full type checking procedure, as defined in the C standard,
can sometimes consume a lot of machine time. For this reason ‘quick’ type checking was
introduced. In this mode a 32 bit checksum is used. Each type is given a checksum. Type
compatibility checking then simple involves comparing two checksums. This technique,
although much faster, has its drawbacks. It is possible for two different types to be given
the same checksum value. However, this possibility is remote. What is more common is
for two types that are compatible to be given different checksums (because C allows the
same type to be written in different ways). Objects having these types are then flagged as
being incompatable. Where possible the checksum has been created so as to minimise the
possibility of two compatible types having different checksums.

The -FUlltype option controls which form of type checking is performed. Switching
this option on causes the type checking to be as per the C standard.

mcl prog1 prog2 -fu-

If file1.c contains:

enum qw {a, b, c} x1;
enum ge {a1, b1, c1} x2;

struct gs {
int mem1;
long mem2;

} gx;
int f1();
int f2();

andfile2.c contains:

enum qw {c = 2 , b = 1, a = 0}x1;
enum ge {a1, b1, ccc1} x2;

struct gs {
int mem1;
long mem2_2;

} gx;
int f1(int);
int f2(char);

The warnings generated would depend on the setting of the-FUlltype option.

FUlltype+ x1 are compatible
x2 are not compatible
gx are not compatible
f1 are compatible
f2 are not compatible

FUlltype- x1 are not compatible
x2 are compatible
gx are compatible

© 1992-1996 Knowledge Software Ltd Page 100

f1 are compatible
f2 are compatible

If ‘quick’ type checking is being used and there is some doubt as to the incompatability of
the identifiers being flagged. It is recommended that full type checking be used. One
advantage of using full type checking is that the types will be displayed in a readable form
if incompatable types are found.

Note: Only those objects and functions that are referenced from the within the translation
unit are written out. Thus if an object is declared with incompatable types in two units, but
not referenced from one of those unit it will not be flagged. This can cause some surprise
if the declarations are not changed and a new warning suddenly appears. The warning will
have appeared because the object that was previously unreferenced is now referenced.

The C standard does not require that macros of the same name have the same bodies in
different translation units. However, macros of the same name having different definitions
is a common cause of problems. When the-Body option is switched on and more than one
file is being checkedmcl will check macros for consistency. This checking involves
comparing the bodies, and in the case of function like macros the parameters, of macros
with the same name. The checking rules used are the same as for multiple macro definitions
within the same translation unit.

mcl part1 part2 -b-

If macro checking is not required and it is necessary to reduce the size of .kic files the
-MAcro option can be used to stop macro definitions being written out. Switching this
option off stops macro definitions being copied to the output file. If the option is on and
there are multiple definitions of macros with the same name then only one of the definitions
is copied (only those macros that are referenced are ever written out).

mcl part1 part2 -ma-

Some users are used to having their tools run silently. The-Quiet option provides just
such a facility. Switching this option on causes output to standard output to stop. Output
may be resumed by switching this option back off.

mcl part1 part2 -q+

If warning messages are being generated and the user is unsure which translation units are
responsible the-Verbose option can be of use. Switching this option on casesmcl to
display the name of every translation unit read in from a .kic or .klc file. If this name is a
member of a library file it will be enclosed in()’s. When on this option also causes the full
type of an object, or function to be displayed when incompatable types are found.

mcl part1 part2 -v-

© 1992-1996 Knowledge Software Ltd Page 101

If one or more files are linked a number of times it can be useful to review the interface
check history. Every timemcl is executed it stores information in an audit trail. The-ATV
option lists the audit trail contained in the input files being linked, together with the audit
trail for this execution ofmcl on the standard output.

mcl mylib -atv+

It can be tiresome always having to specify that the standard library has to be checked
against. The-Lib option can be used to cause the .klc file (a prelinked form of the standard
library) named in the configuration file always to be checked against the user’s program.
See the config file for details.

7.2.1 Character significance in identifiers

Historically linkers have not been as sophisticated as compilers in their handling of
identifiers. Many linkers still only support upper case letters in identifiers and truncate after
a relatively small number of significant characters.mcl is capable of mimicking this
behaviour, more out of compatibility with prior art than a desire to hobble the user.

The-XCOnvertcase option controls the case folding of external names. Switching this
option on causes external identifiers which only differ in their case to be treated as referring
to the same object. Thus allowingmcl to subsequently act in a similar manner to a linker
with such a restriction.

The C standard specifies that the case of external identifiers need not be considered
significant.

If the following translation unit is processed bymcl using the-XCOnvertcase+ option:

extern int a_long_name;

extern int A_long_name;

both declarations will be regarded as referring to the same object at link time.

If file1.c contains:

int a_long_name;

andfile2.c contains:

int A_long_name;

Randomly selecting one of the definitions will not usually cause a problem. However, if
both have different initial values assigned to them, then the final value of the object, prior
to executing the first statement inmain , is undefined.

The -XNAMETrunc option controls the significance of external names. This option may
be used to specify the number of significant characters in an external identifier. Identifiers

© 1992-1996 Knowledge Software Ltd Page 102

not significant after the given number of characters will be treated as referring to the same
object.

The C standard specifies that only the first six characters in an external identifier need be
considered significant.

If the following file is processed bymcl with the option-XNAMETrunc 6 :

extern int a_long_name;

extern int a_long_day;

both declarations will be regarded as referring to the same object at link time.

The -XCASESig option controls the reporting of warnings based on the case of external
names. Switching this option on causes a warning to be reported if two identifiers are the
same except for their case, within their significant length. The identifiers are still treated
as separate symbols. Thusmcl can flag identifiers that might cause problems with other
linkers without having to behave like them.

As well as case significance the number of characters in an identifier can be significant.
The -XNAMELength option controls the external name significance of identifiers. This
option may be used to specify the number of significant characters in an external identifier.
A warning will be given if identifiers aren’t significant before the given number of
characters.

The number of characters truncated to is stored in the klc file. Another invocation ofmcl
using truncation will cause the minimum of its truncation length and the previous truncation
length to be stored in the .klc file. Thus when usingmcl on a file previously truncated to
six characters, with the option-Name 8, mcl will flag any clashes to within six characters.

7.3 Call/Definition checking

If a function is called in a unit that does not contain a declaration or definition for that
identifier an implicit declaration is made. This implicit declaration has the equivalent effect
to extern f();

If file3.c contains:

/* ... */
int i;
long j;

f(i, j);

andfile4.c contains:

/* ... */

© 1992-1996 Knowledge Software Ltd Page 103

long f(char c, int k)
{
/* ... */
}

then the command:

mcl file3 file4

will cause a warning to be generated to the effect that the functionf is called with a different
type to its definition. Definitions always take precedence over declarations. So if three
files are being checked and one contains a call, one a declaration and one a definition the
files containing the declaration/definition are checked first. If these are not compatible a
warning is flagged. The definition will then be checked against the call.

One unit of source code may contain more than one call to the same function, and not contain
a prototype.mccwill check that the type of each function call, deduced from the parameters
passed, is compatible with every other call to that function in the same source file. If the
same function is called with different parameter types it raises the question of which type
mcl should check against. The solution adopted was to check against all of the call types.
This approach ensures that no cross unit type mismatches go unflagged.

7.4 Using mcl as a librarian

The names of the linked files are stored in the klc file. Some operating systems support
mixed case alphabetic characters in filenames, while others do not. The-FOLD option
causes all characters in filenames to be forced to upper case before searching, or comparing
with other filenames.

mcl part1 part2 -fold+

7.5 The call hierarchy

The -HIerarchy option causes a call tree to be generated. The hierarchy in question is
a function call hierarchy. Starting atmain , each called function is given. The diagram is
organised to list all functions called bymain , followed by all the functions that they call
and so on.

Calls via pointers to functions are also given.

Note: This option can currently only be used in conjunction with linking to produce an
executable (-Exe option).

mcl part1 part2 -hi+ -e+

© 1992-1996 Knowledge Software Ltd Page 104

Included with this call information is a list of functions assigned to each pointer, a list of
uncalled functions and object definitions. At the end of the hierarchy diagram, along with
the uncalled functions is a list of the unused file scope objects.

The name of the output file is created by appending the suffix .hry to the output filename
(stripped of any .kec suffix).

7.6 Error reporting

Although they may be numerous the number of different causes for warnings, at cross unit
check time, is small.mcl offers the standard range of reporting services provided by the
common interface. There are nomcl specific error options.

7.7 Common warnings and their solution

Function declaration not compatible with definition. This problem is usually caused by
a missing header file. If a function is defined using a prototype then calls from other
translation units should also use the same type. If the header containing the function
declaration, with or without a prototype, has not been included a call to that function will
result in a default declaration (extern f()). It may also be possible that the header was
included but does not include a declaration of the named function (older systems make use
of the fact that a default declaration occurs to omit those declarations that are compatible
with the implicit declaration).

‘x’ is defined more than once. This problem can arise because of multiple initialisations
of the object in different translation units, perhaps even in a header that is included by
different source files.

Object not defined. An object, with file scope, was referenced in one or more translation
units making up the program, but no definition was found. This problem usually occurs
because an object declared in a header has not been defined in any translation unit.

Options vary between files. Two or more of the files given tomcl were processed bymcc
using different command line options.

7.8 Using make

Creating a runnable application involves several stages. Compiling the source was dealt
with in the previous chapter. Once compiled the separate units need to be linked together.
This linking process may be used to create libraries (for use by many applications), or it
may produce an executable program.cc is the Unix tool that performs both compilation
and linking. The replacement commandccc is also capable of carrying out both of these
operation.

© 1992-1996 Knowledge Software Ltd Page 105

Thus if an existing make file makes use ofcc to build an application then replacing it with
cccwill ensure that the cross unit checks are carried out.

The Unix librarian,ar, can be used to manipulate libraries of .o files (the convention is that
library files end in a .a). This also has an equivalent substitute, calledarr . arr can be used
to manipulate libraries of .klc files as well as .o files (it does this by invokingmcl).

There is a possibility that a make file has been written to invokeld, the low level tool that
actually does the work, rather than usingcc.

7.9 Summary of options

Those options marked with a star* apply to usingmcl in conjunction withmce, the dynamic
checker. Foe a full description of these options see the Reference Manual.

ATP Purge Audit Trail from file

ATV View Audit Trail

Body Do we check macro bodies between files

BUILDmce* Build a new interpreter

CHKLIB * Add checking routines for host compiled library

COnfig
CFG <filename>

Read configuration from given file

Delete <filename> Delete the given file from the input file

DETail Display detailed help

ECHO <text> Display the delimited text on the screen

ERRfile <filename> Specify error file name

Exe* Create an executable

FOLD Fold filenames before comparing significance

Forgetall <option> Forget all arguments of option given so far

FUlltype Perform full cross translation unit checking

GLue* Glue the .klc file to the new interpreter.

Graphics Use graphics in the hierarchy report

HControl * <filename> Specify the hierarchy control file

HIerarchy Create a hierarchy file

HE Entries in external hash table

HM Entries in the macro hash table

HELPMod <modifiers> Set modifiers for displayed help

HOSTinclude* <filename> Link the file into the new interpreter

Keeptemp* Don’t remove temporary files

© 1992-1996 Knowledge Software Ltd Page 106

Lib Link in the standard libraries

LOGfile <filename> Create a log file

MAcro Macro checking between files

MAPFunc* Remap a function

MAPUnit * Remap the functions within a header

MCErts * Set the path of the mce runtime system

Min Use the least memory possible

MM Memory the memory manager can use

MN Number of nodes for the memory manager

Nomsg Suppress a specific error number

OUTBuf
OB

Set size of output buffer

OBJpath* <path> Set path for finding host-compiled object files

OSPCDir Set directory to find .kics and stub files

Output <filename> Send output to the given file

OP
OUTPUTPath <path>

Specify output path for all output files

Path <path> Path for following files

Quiet Stop displaying messages on standard output

REFerences Display references to the standard

REMark Treat delimited text as a comment

Replace <filename> Replace the given file in the linked file

Search <filename> Search path for .klc files

SUppresslvl Suppress messages below given level

TRACECfg
TRC

Trace Configuration being read in

TYpedepth Maximum indentation for displaying types

Userlib <filename> Add path to userlib in .klc file

Verbose Talkative mcl

VIA <filename> Take options from the given file

XCOnvertcase Case fold external names

XCAsesig Ignore case differences in externals

XNAMELength
XL

External name significance

XNAMETrunc
XT

External name truncation point

XTRact Set record to delete from an executable

© 1992-1996 Knowledge Software Ltd Page 107

© 1992-1996 Knowledge Software Ltd Page 108

Chapter 8

Common Problems

This chapter contains a list of those questions and problems that commonly occur when
using theOSPC.

QHow do I find out the default option settings in force when I run one of the component
tools of theOSPC?

ARunning that component without giving it any options (or giving the help option) will
give a list of options and their current setting. The-DET option can be used to obtain

a list of all available options and their current values

Note that this default setting is obtained by reading theconfig file and any local options
file.

QI made a local copy of the configuration file but it is not being read when I run its
component tool.

ATheconfig file is located by searching theINFO/tool directory. Use the-CFG
option to cause the local copy to be used. Better still create a .rc file in the home

directory.

QI renamed one of the components of theOSPC. Now theconfig anderror files
are not being read.

AThe appropriateconfig or error file is found by prefixing the name of the
component tool to that suffix. Thus renamingmcc to modcwill cause it to search for

INFO/modc/config , INFO/modc/error and INFO/modc/options. So if a
component tool is renamed its associated files will also need to be renamed.

QThe configuration and platform profile information is not being found.

AThe directory containing this information is found by tracing back along the path that
the tool being executed was found on. If the tool has been moved to another directory

check that the directorycheckinfo has also been modified.

QSystem headers are not being found.

ACheck that the correct include path is given in theconfig file or local options file.

QError numbers are being given instead of text messages. Why is this?

© 1992-1996 Knowledge Software Ltd Page 109

AIf the component tool cannot locate and open the appropriateerror file the error
handling mechanism will display the error number. Check that the error files can be

located and opened.

QSometimes error numbers are being given instead of text messages. Theerror file
is being opened correctly. What is happening?

AThe probable cause is missing lines from theerror file. If the given error number
cannot be found in theerror file then the error handling mechanism will display the

error number. Check that the error numbers being displayed do occur in the accessible error
files.

QThe files being given to options are having a path prefix added to them.

AThe -OUTPUTPATHand -INPUTPATH options sets the path prefix for output and
input respectively. When encountered on the command line, or in a via file these

options causes any filenames encountered in subsequent options to have this path prefixed
to them. This behaviour can be switched off by using the-Forgetall option or by
specifying a new path prefix.

QTwo names are flagged as being incompatible between two translation units and they
look compatible.

AMake sure thatmcl is not running in quick (option setting-FUltype-) mode. In C
two declarations can look different and still be compatible. In quick mode a 32 bit

checksum is used for compatibility checking. This use of this checksum approach can
sometimes cause types that are compatible to be flagged as being incompatible. Check that
the-FUlltype option is switched on.

QWhen using ccc strange options are being passed to mcc.

AOn some platform thecccommand has default values for command line options built
into it. cc itself invokes other programs to compile a source file. These internal values

are passed to these other programs via command line options (unlikeOSPC, cc does not
read default options from configuration files). Because of the close coupling betweencc
andcccthese options are also passed tomcc. The solution is to provide an explicit rule in
the makefile for building .o files from .c files.

QAnew platform profile has been created but the options it sets don’t have the specified
values.

AIt is possible that an option is having its expected value overridden by a subsequent
subprofile. Use-TRACE profile to see what values are being read in.

QI am being told that the maximum number of users has been reached and that I cannot
use the tool. But nobody else on the system is usingOSPC.

© 1992-1996 Knowledge Software Ltd Page 110

AWhat has probably happened is that a running user aborted without telling the license
manager that it had finished. This can happen if thekill -9 command is used. The

licensing system has a five minute timeout designed to handle this situation. Wait five
minutes and try again. Aborting a process is quite a rare occurrence and not recommended,
so this problem is unlikely to be seen frequently (using control C will not cause this
problem).

QTwo objects, with the same name, in different files are incompatible, butmcl does not
complain about them.

AThe first thing to do is check that full type checking is enabled. There is a very small
change thatmcl will not flag incompatible declarations when in quick type checking

mode. If the same answer is still being given check the C standard. Remember, across
translation units the rules are different than for within a single unit.

© 1992-1996 Knowledge Software Ltd Page 111

© 1992-1996 Knowledge Software Ltd Page 112

Chapter 9

Collected Syntax

9.1 C Language

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:
one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

token:
keyword
identifier
constant
string-literal
operator
punctuator

identifier:
non-digit
identifier non-digit
identifier digit

non-digit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
$ (in non-strict C only)

digit: one of
0 1 2 3 4 5 6 7 8 9

constant:
floating-constant
integer-constant

© 1992 Knowledge Software Ltd Page 113

enumeration-constant
character-constant

floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign:
+
-

digit-sequence:
digit
digit-sequence digit

floating-suffix:
f
l
F
L

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
non-zero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

non-zero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f

© 1992 Knowledge Software Ltd Page 114

A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt

unsigned-suffix:
u
U

long-suffix:
l
L

enumeration-constant:
identifier

character-constant:
‘c-char-sequence’
L ‘c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any character in the source character set except the
single-quote ‘, backslash \, or new-line character
escape-sequence

string-literal:
“s-char-sequenceopt”
L “s-char-sequenceopt”

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any character in the source character set except
The double-quote “, backslash \, or new-line
escape-sequence

operator: one of
[] () . - + - ~ ! / % ^ |
? : = , # sizeof
++ — & *
< > = == != && ||
*= /= %= += -= <= >= &= ^= |=
##

punctuator: one of
[] () { } * , : = ; ... #

© 1992 Knowledge Software Ltd Page 115

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-ex new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-ex new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define ident lparen ident-listopt) replace-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within a #include directive)
identifier (no keyword distinction)

© 1992 Knowledge Software Ltd Page 116

pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character that cannot be one of the above

header-name:
h-char-sequence
“q-char-sequence”

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except
the new-line character and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any character in the source character set except
the new-line character and “

new-line:
the new-line character

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

declaration:
declaration-specifiers init-declarator-listopt;

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

© 1992 Knowledge Software Ltd Page 117

storage-class-specifier:
typedef
extern
static
auto
register

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

struct-or-union-specifier:
struct-or-union identifier opt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier
type-qualifier specifier-qualifier-list

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt: constant-expression

enum-specifier:
enum identifieropt { enumeration-list }
enum identifier

enumeration-list:
enumeration
enumeration-list , enumeration

© 1992 Knowledge Software Ltd Page 118

enumeration:
enumeration-constant
enumeration-constant = constant-expression

declarator:
pointeropt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressionopt]
direct-declarator (parameter-type-list)
direct-declarator (identifier-list opt)

pointer:
* type-qualifier-list opt
* type-qualifier-list opt pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , ...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

identifier-list:
identifier
identifier-list , identifier

type-name:
type-specifier-list abstract-declaratoropt

abstract-declarator:
pointer
pointeropt direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropt [constant-expressionopt]
direct-abstract-declaratoropt (parameter-type-listopt)

typedef-name:
identifier

initializer:
assignment-expression
{ initializer-list }

© 1992 Knowledge Software Ltd Page 119

{ initializer-list , }

initializer-list:
initializer
initializer-list , initializer

translation-unit:
external-definition
translation-unit external-definition

external-definition:
function-definition
declaration

primary:
identifier
constant
string-literal
(expression)

postfix-ex:
primary-ex
postfix-ex [expression]
postfix-ex (argument-expression-listopt)
postfix-ex . identifier
postfix-ex - identifier
postfix-ex ++
postfix-ex —

argument-expression-list:
assignment-ex
argument-expression-list , assignment-ex

unary-ex:
postfix-ex
++ unary-ex
— unary-ex
unary-operator cast-ex
sizeof unary-ex
sizeof (type-name)

unary-operator: one of
& * + - ~ !

cast-ex:
unary-ex
(type-name) cast-ex

multiplicative-ex:
cast-ex
multiplicative-ex * cast-ex
multiplicative-ex / cast-ex
multiplicative-ex % cast-ex

shift-ex:
additive-ex

© 1992 Knowledge Software Ltd Page 120

shift-ex < additive-ex
shift-ex > additive-ex

relational-ex:
shift-ex
relational-ex shift-ex
relational-ex shift-ex
relational-ex shift-ex
relational-ex = shift-ex

equality-ex:
relational-ex
equality-ex == relational-ex
equality-ex != relational-ex

AND-ex:
equality-ex
AND-ex & equality-ex

exclusive-OR-ex:
AND-ex
exclusive-OR-ex ^ AND-ex

inclusive-OR-ex:
exclusive-OR-ex
inclusive-OR-ex | exclusive-OR-ex

logical-AND-ex:
inclusive-OR-ex
logical-AND-ex && inclusive-OR-ex

logical-OR-ex:
logical-AND-ex
logical-OR-ex || logical-AND-ex

conditional-ex:
logical-OR-ex
logical-OR-ex ? ex : conditional-ex

assignment-ex:
conditional-ex
unary-ex assignment-operator assignment-ex

assignment-operator: one of
= *= /= %= += -= <= >= &= ^= |=

expression:
assignment-ex
expression , assignment-ex

constant-expression:
conditional-expression

statement:
labelled-statement
compound-statement

© 1992 Knowledge Software Ltd Page 121

expression-statement
jump-statement
selection-statement
iteration-statement

labelled-statement:
identifier : statement
case constant-ex : statement
default : statement

compound-statement:
{ declaration-listopt statement-listopt}

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
expressionopt;

jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt;

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt; expressionopt; expressionopt) statement

9.2 Precedence of operators

primary expressions

16
16
16
16
16

literals names
a[i]
f()
.
->

simple tokens
subscripting
function call
direct selection
indirect selection

© 1992 Knowledge Software Ltd Page 122

unary expressions

15
14
14
14
14
14
14
14
14

++ —
++ —
sizeof
(type-name)
~
!
-
&
*

postfix increment/decrement
prefix increment/decrement
size
cast
bitwise not
logical not
arithmetic negation
adress of
contents of

binary operators

13L
12L
11L
10L
9L
8L
7L
6L
5L
4L
3R
2R

1L

* / %
+ -
<< >>
=
= = !=
&
^
||
&&
|
?:
= += -= *= /= %= <<=
>>= &= ^= |=

,

multiplicative
additive
shift
inequality
equality
bitwise and
bitwise xor
bitwise or
logical and
logical or
conditional
assignment

comma

L, indicates left associative operators; R, right associative operators.

© 1992 Knowledge Software Ltd Page 123

© 1997 Knowledge Software Ltd Page 124

INDEX

A

#assert 55
a.out 67
Abbreviations

disambiguate 40
notation 40
upper case 40

ABI 49
Ada . 2
Alignment

fault 15
requirements 15

API . 3, 5
arguments 75
conformance to 27, 73
database 28, 74, 88
detecting 36, 88
extension 89
future use 95
option 27
optional 28, 74
reserved names 84, 95
types 33, 81
XPG 33

ar 20, 64, 106
arr 106
make 20

Architecture 4
8086 66
configuring 46

Arguments
API 75
casting 76
symbolic 76

ASCII 69
#assert 66
Assembler 68
Assert 56
Audit trail 102

displaying 102 . . .

B

bcopy 87
Binding

language 25
Braces 62
BSI . 2
Bug

report 7

Byte sex 15 . . .

C

C
ANSI 5
AT&T 6
common usage 25
ISO . 5
SVR4 5

C standard
case significance 102
significant characters 103

c89 65, 67
file types 68
options 67

Cabstract 53
Call

checking 104
conventions 76
cross unit checking 104
function 79
function type 104
incompatible 59
information 105
interface 75
link check 87
return value 77

Cast
implicit 58, 62
inserted 59

CC 19, 49, 51, 64-65, 67, 105
make file 20

ccc 19, 64
char

number of bits 58
checkinfo 46
Checking

cross unit 12, 59, 64, 99
declaration 84
multiple files 99

Checksum 100, 110
Code

layout 62
standards 62

CODES 56
Command line

abbreviations 40
filename 41
- character 40
number of files 99
option 39
order of options 39
whitespace 40-41

Comment
requiring 62

Page 125 © 1997 Knowledge Software Ltd

Common practice 75
Compatibility

calls 104
checking 100, 110
compiler 51
cross unit 99, 101
declaration/definition 104
function 105
inconsistent 99
prior art 102
source code 99

Compile 4
Compiler 14, 45, 49

development 3, 22
evolution 23
extensions 55
host 19, 51
input 51
other 66
validated 22

Configuration
changing 46
default 46, 51
default options file 42
file 42
file not found 109
local copy 109
processing 46
standard library 102
startup 51
strings 46
tool 39
tracing 20

Conformance 3
API 27, 73
application 23
implementation 23
incremental 26
national body 24
platform 1
POSIX 21
runtime 24
strict 2, 21, 23

Constant 34
arithmetic 59
expression 59
literal 93
symbolic 76-77
type of 59

Conventions
typographical 6

Cpu 14, 45, 49, 58
csh . 66

D

Datatype
relationship 58
size 58

Declaration
implicit 96, 103, 105
layout 62

Default
configuration 48
declaration 89
default values 42
displaying values 42
internal 51
listing value 39
option values 42
type 58

define 54, 56
macro 67

Definition
checking 104
multiple 105
none 105

Dependency 64
dirent 82
dispmet 63
doinstall 46
$. 48
DOS 55, 66 . . .

E

EDCDIC 69
80x86 66
Email . 7
Environment

development 63
integrating 19
variable 47-48, 65

Environment variable 46
errno 57
Error

common 55
constraint 53, 55-56
fatal 44
format 85
large number 43
locating 101
maximum 55
mcl specific 105
numbers 109
reporting 55, 105
syntax 55

Error file
not found 109

© 1997 Knowledge Software Ltd Page 126

Error number
display 109-110
locating 45

errorrange 45
Escape

sequence 15
Exception

context 85
Executable 97, 104

efficient 68
Execute 97
Extensions 55

compiler 55
GCC 66
language 55, 66
option 55, 67
OSPC 67
service 80
standard 80
struct 82
SVR4 66
tempt 66

External
character significance 103
linkage 84, 95
unresolved 87 . . .

F

Far . 55
Feature test

macro 93
field

names 82
ordering 33, 81, 83
references 82
restricted values 78
struct 82

File suffix
.a 68, 106
.alg 88
.api 88
.c 19, 51, 53
.hry 105
.i . 53
.kec 105
.kic 51, 63, 65
.klc 97, 99, 106
.lst 53
.met 63
.o 19, 64, 106
.rc . 20

File type
ident 85

Filename 41
case significance 104

comparing 104
default klc 99
hierarchy 105
kic 54
local options 42
output 53
storing 104

Flag
status 31

Flow
analysis 76

for . 62
Forgetall 43, 56
FUlltype 110
Function

calls 105
implicit declaration 89
status flags 57 . . .

G

GCC 66
Go Solo 6 . . .

H

Header
alternative 55
API 32, 80
conformance 55
error suppression 55
extensions 33, 81
included 75
known 80
locating 43
missing 105
not found 109
not included 97
system 55, 80, 85, 96, 109
types 32, 81
unknown 80
unrecognized 80
unreferenced 61
usage 61
valid filenames 80

Help 51
default 45
detailed 45
text 10

Hierarchy 104
HOME 48
Huge 55 . . .

Page 127 © 1997 Knowledge Software Ltd

I

Identifier
additional characters 67
case folding 102-103
case significance 102
characters 67
database 85
exceptions 85
external 102
external significance 102-103
host 61
IDFollow option 67
IDStart option 67
matching 74
platform specific 86
properties 87
protecting 79
reserved 34, 85-86
6 characters 103
start character 67
unknown status 89
usage 61
using value of 77
visible 61

if
statement 58

Implementation
details 73
reserved names 95

Implicit
cast 62

include 54, 56
environment variable 47
location of 109
path 46, 68, 109

Incompatable
checksum 100

Incompatible 110
cross unit checking 111

Indentation 62
Indentifier

unknown status 36, 87
Informix 60
Ingres 60
Installation

checking 9
int

number of bits 58
Integer

representation 59
Interface

inconsistency 97
specification 74

ISO
C . 5

POSIX 5 . . .

K

K&R 15, 25
Keywords 66
kic . 65
Kic contents 103

file names 104
macros 101

Kill
process 111 . . .

L

ld 49, 106
Librarian 97, 104
Library 68, 105

building 64
file 101
system 84, 95

Licensing 10
maximum users 10
timeout 111

Limit
maximum reported errors 43, 55

Link 22, 105
history 102

Linkage 84
Linker 97, 102

others 103
lint 3-4, 61, 70
Linux 66
Listing 53
Literal 76

hex 59
Local options 65

creating file 43
file 42
precedence 42

Locate 46
Logfile 47
Loop

coding standard 62 . . .

M

Macro
bodies 101
checking 101
command line 54
constant 34, 83
expanded 53
feature test 32, 79

© 1997 Knowledge Software Ltd Page 128

parameters 101
predefined 79
symbolic 75
writing out 101

main 104
make 19, 51, 63-65, 105

default rules 19, 64
suffixes 65

Max
option value 41

mcc option
summary 69, 71
trace options 20
trace profiles 20

mce . 69
mcl . 64

multiple use 103
mcl option 99

ATV 102
Body 101
FOLD 104
FUlltype 100
HIerarchy 104
Lib 102
MAcro 101
Quiet 101
Verbose 101
XCASESig 103
XCOnvertcase 102
XNamelength 103
XNAMETrunc 102

Metrics 63
Model Implementation 2, 51
Money 21 . . .

N

Name
equivalence 99
reserved 34, 86

Namespace 84
Near 55
NIST . 2
Nomsg 47
Numeric parameter 40

maximum 41 . . .

O

Object
referenced 101
uninitialised 60

ODBC 74
Operator 76

relational 79

Option 45
abbreviating 40
CHECKId 85
common 46
COnfig 46
current value 20
default 109
default values 42
Define 54
different 105
dynamic 69
Forgetall 47, 110
HDRsuppress 55
Include 54
Listing 53
LOGfile 47
MAXErrors 43, 55
MAXWarnings 43, 55
no parameters 40
Nomsg 44
numeric parameter 40
On/Off parameter 40-41
order of processing 48
Output 54
OutputPath 54
overriding default 43
path 110
PPlist 53
reading in 46
REFerence 45, 56
SOurce 53
SQL 60
STandard 44
string parameter 40-41
SUppresslevel 44
Via 47

Optional 74
API 32, 79

Oracle 60
OSPC 96

full 96
Output 47 . . .

P

Parameter
default type 58
in call 104
not int 59
symbolic 30

Pascal 2
Path 45, 47, 56

prefix 110
Pathname

flagging 57
Platform 51

Page 129 © 1997 Knowledge Software Ltd

headers 80
profiles 14, 45, 53
source 86
specific fields 82
target 86
unknown profile 53

Pointer
to function 104
number of bits 58
representation 66

Political 23
Portable

effort 14
maximally 21

Positive 77
POSIX . . . 1, 16, 21, 23-24, 28, 74, 79, 95

language independent 24
POSIX.1 15, 82
POSIX.2 65, 67
POSIX.4 78
Preprocess 68
Preprocessor 53

directives 53
extensions 66
SQL 60

Prior art 22, 97
Problem

cause of 58
Process

number 48
profadm 45, 53
Profile

binary 14
new 110
platform 14

Program
example 10

Prototype 59, 105

Q

Quiet 56

R

Reserved
#undef 96
identifier 95
names 95

Reserved names 84
Result

codes 57
return

codes 49
expression type 58

implicit type 58
symbolic 31, 79

Runtime 25
undefined 25 . . .

S

Same object 103
Scalar

assuming 34, 83
size of 59
type 82, 99

Scope 84
file 84, 95

Services
optional 79
platform specific 86

Shell 47
Significant

characters 102
Size 56
Sparc 45
SQL

embedded 60
extensions 60
standard 60

Standard
C 3, 23, 102-103
coding 57
company 30, 77
conformance 56
fields 82
future revisions 84, 95
library 102
optional 28
prelinked library 102
references 45
references to 56
reserved names 84
SQL 60

Standard output 53
Status

flag 57
#status flags 58
stderr 47
stdout 20, 68
String

configuration 42
flagging contents 57
in file 41
parameter 41
terminated by 41

#strings 57
struct 56

field 33, 81-82
initialisation 83

© 1997 Knowledge Software Ltd Page 130

Sun 53, 82, 87
platform 33

SVR4 55, 66
Symbolic 75

constant 83
return value 31, 79
value 95 . . .

T

time.h 78
Tracing

options 20
Translation unit

displaying 101
Truncate

identifiers 102
Type

agreement 13
argument 30, 77
arithmetic 30, 76
display 101
scalar 34, 83

Type checking
checksums 100
cross unit 97, 99
displaying 101
full 100
incompatabilities 97
name equivalence 99
quick 100
structure 99 . . .

U

#undef 67-68, 85, 96
Undefined 21

behaviour 3
Unix

assumption 58
Unused

objects 105 . . .

V

Validation
suite 3

Value
property 78
range of 77
restricted range 77
return 78-79

Via . 48
file 39 . . .

W

Warning
understanding 89

Web
knosof 7

while 62
Whitespace 54 . . .

X

X/Open 6
X11 14, 37, 85, 88

headers 80
X3J11 22
XPG 82

POSIX.1 82 . . .

Page 131 © 1997 Knowledge Software Ltd

