
Open Systems Portability
Checker

Reference Manual

Knowledge Software Ltd

November 1999

History

November 99: mcc v5.0, mcl v2.5, mce v2.5
May 98: mcc v4.3, mcl v2.5, mce v2.5
September 97: mcc v4.2, mcl v2.5, mce v2.5
April 97: APIdeduce v1.0
November 96: mcc v4.1, mcl v2.5, mce v2.5
April 96: mcc v4.0, mcl v2.5, mce v2.5
August 95: mcc v3.2, mcl v2.4, mce v2.4
December 94: mcc v3.1, mcl v2.4, mce v2.4
May 94: mcc v3.0, mcl v2.4, mce v2.4
December 93: mcc v2.3c, mcl v2.3, mce v2.3
July 93: mcc v2.3b, mcl v2.3, mce v2.3
December 92: mcc v2.3a, mcl v2.3, mce v2.3
July 92: mcc v2.3, mcl v2.3, mce v2.3
February 92: mcc v2.2, mcl v2.2, mce v2.2
September 91: mcc v2.1, mcl v2.1, mci v2.1
December 90: mcc v2.0, mcl v2.0, mci v2.0
August 90: mcc v1.0, mcl v1.0, mci v1.0

Support

Knowledge Software Ltd provides telephone and mail support for those users who have
purchased their systems from Knowledge Software Ltd.

Disclaimer

This document and the software it describes are subject to change without notice. No
warranty, express or implied, covers their use. Neither the manufacturer nor the seller is
responsible or liable for any consequences of their use.

TradeMarks

Model Implementation C Checker, Open Systems Portability Checker, OSPC and APIde-
duce are trademarks of Knowledge Software Ltd. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Knowledge Software Ltd. Farnborough, Hants, England. Tel: +44 (0) 1252-520667

e-mail: OSPC@knosof.co.uk

URL: http://www.knosof.co.uk

Copyright 1990,91,92,93,94,96,97,98,99 Knowledge Software Ltd. All rights reserved.

Table of Contents

Chapter 1 Introduction . 1

1.1 Contents of Reference Manual 1
1.2 Related documents 2
1.3 Conventions 2
1.4 Reporting problems 3

Chapter 2 User interface and configuration 5

2.1 Organization of the checker 5
2.2 ROOT/bin 5
2.3 INFO (ROOT/bin/checkinfo) 6
2.4 ROOT/lib 6
2.5 ROOT/include 7
2.6 Default options 7
2.7 Local options file 7
2.7.1 Creating a local options file 8
2.8 Locating the configuration files 8
2.9 The string configuration files 9
2.9.1 Layout of string configuration file 10
2.9.2 Format lines 10
2.9.3 Changing a configuration file 11
2.9.4 Trace option 11
2.9.5 Common alterations 11
2.9.6 Help information 12
2.10 Error files 12
2.10.1 Introduction 12
2.10.2 Who uses error files 13
2.10.3 Format of the error file 14
2.10.4 Define line 14
2.10.5 Message lines 15
2.10.6 Error number ranges 15
2.11 Location of host related files 16
2.12 Hierarchy control files 16
2.12.1 Control file options 17

Chapter 3 Source code checker (mcc) 19

3.1 Introduction 19
3.1.1 Environment interface 19
3.2 Options 19

© 1997 Knowledge Software Ltd Page iii

Chapter 4 Platform profiles 69

4.1 Introduction 69
4.2 The profile hierarchy 69
4.3 Reducing the output 70
4.4 How options obtain their values 70
4.4.1 Processing the component profiles 71
4.5 Profile administration 72
4.5.1 Profadm options 72
4.6 Contents of profile files 76
4.7 Restrictions 76
4.8 Directory structure 76
4.9 Creating new platform profiles 78
4.9.1 Obtaining the information 78
4.9.2 What goes where 78
4.9.3 Checking it works 78

Chapter 5 Creating Standards profiles 79

5.1 Introduction 79
5.2 When can the construct be detected? 79
5.3 Language 79
5.4 Service interface 80
5.4.1 Introduction 80
5.4.2 Identifiers 80
5.4.3 Header files 81
5.4.4 Restrictions on use of macro names 81
5.4.5 Arguments in function calls 81
5.5 Accredited standards 81
5.6 Manufacturers standards 82
5.6.1 Industry standards 82
5.6.2 Derived or superset standards 82
5.7 Interaction between standards 82
5.8 The error file 83
5.9 Checking new profiles 83

Chapter 6 The API identifier database 85

6.1 #api 86
6.2 #assigns 86
6.3 #duplicate services 88
6.4 #end 88
6.5 #error 88
6.6 #exception 88
6.7 #feature test 89
6.8 #header 89

© 1997 Knowledge Software Ltd Page iv

6.9 #literal 89
6.10 #not always constant 90
6.11 #param (symbolic parameters) 91
6.11.1 #sets 92
6.11.2 #param 93
6.12 #path 93
6.13 #protect 93
6.14 #reserved 95
6.14.1 Error number mnemonics 95
6.14.2 Reserved identifiers (#reserved) 96
6.15 #status flags 99
6.16 Structure files 100

Chapter 7 Identifier checking 103

7.1 Introduction 103
7.2 Declaration/definition checks 103
7.3 Checking algorithm 104
7.3.1 Action on #undef 104
7.3.2 Programming style example 105
7.4 Feature test macros 106
7.5 Identifier usage 106
7.5.1 Symbolic parameters 106
7.5.2 Assignment to and comparison with 107
7.5.3 Optionally defined macros 107

Chapter 8 Cross unit checker (mcl) 109

8.1 Introduction 109
8.2 Options 109
8.3 The Hierarchy diagram 132

Chapter 9 The Internet . 135

9.1 Introduction 135
9.2 Web pages 135
9.3 Newsgroups 135
9.4 Other sources 136

Chapter 10 Summary of .kic and .klc contents 137

10.1 Introduction 137
10.2 Audit trails 137
10.3 Externals 137
10.4 Header 137

© 1997 Knowledge Software Ltd Page v

10.4.1 File information 138
10.4.2 Line numbers 138
10.4.3 Literal area 138
10.4.4 Typeinfo 138

Chapter 11 Syntax of the C language 139

11.1 Precedence of operators 148

© 1997 Knowledge Software Ltd Page vi

Chapter 1

Introduction

Welcome to the Reference Manual for the Open Systems Portability Checker. The user guide
gave a brief introduction to the services offered by theOSPCand how they might be used.
This Reference Manual delves deeper into the standards checking abilities ofOSPC. It
also describes howOSPCcan be tailored it to suite individual requirements.

First we will examine, in detail, how the standards checking information is stored, and how
it might be configures to suite other standards and requirements. This is followed by a
detailed description of the options provided by each component tool. This is followed by
background information on platform profiles and how they can be managed.

1.1 Contents of Reference Manual

The following provides an overview of what the Reference Manual contains:

User interface and configuration. Describes the contents and format of each of the input
files, and how they may be tailored for other requirements.

Source code checker.Lists all of the command line options formcc.

Cross unit checker. Lists all of the options formcl.

Platform profiles. Describes the concepts behind platform profiles. Also explains how
they are processed and administered.

Creating Standards profiles. How to approach standards documents with a view to
creating a new subprofile containing their requirements.

Understanding the output. Why does the checker complain about my apparently innocent
code, and other gory stories.

Using makefiles.

Appendices

A. Headers in the ISO C and POSIX Standards

B. Syntax of C Language

© 1992-1997 Knowledge Software Ltd Page 1

1.2 Related documents

Installation guide

User Guide

Understanding Standards

ANSI C Standard. X3.159-1989

ISO C Standard. ISO/IEC 9899:1990

POSIX.1 ISO/IEC 9945-1 (system API)

P1003.16 Draft 2. Binding for ISO/IEC 9945-1

Realtime Extensions for Portable Operating System, P1003.4 Draft 11

Unix System V Release 4 Programmer’s Guide: ANSI C and Programming Support Tools

C Language Interfaces, AT&T Data Systems Group, 1989. ISBN 0-13-109661-3

Systems Interfaces and Headers, Issue 4, X/Open. ISBN 1-872630-47-2

1.3 Conventions

References to the Standard, when a language is being discussed, should be taken to mean
ISO 9899:1990 (was ANSI X3.159-1989).

The typographical conventions used follow those given in the POSIX standards.

Type of entry Example

C-Language Data Type short int

C-Language Error Number [EINVAL]

C-Language Function printf()

C-Language Argument stream

© 1992-1997 Knowledge Software Ltd Page 2

Type of entry Example

C-Language Global External errno

C-Language Header <stdio.h>

C-Language Keyword #undef

Constants MAX_UCHAR

Environment Variables MCEDITOR

Example Input mcc myprog

Example Output Hello world!

File Name /usr/include

Special Character <new-line>

Utility Name mcc

Utility Option -CFG

Parameter [<platform type>]

Constructs delimited by[] are optional. Items delimited by single quote characters‘ are
literals.

1.4 Reporting problems

Problems can be reported via electronic of paper mail. A bug report form can be found in
the distributed software package indoc/prob.txt .

© 1992-1997 Knowledge Software Ltd Page 3

Our electronic address is:

support@knosof.co.uk

If you would prefer to write:

Knowledge Software Ltd, 62 Fernhill Road, Farnborough, Hants, GU14 9RZ, England

Suggestions for improvement are also welcome.

Papers and other information can also be found at http://www.knosof.co.uk

Note: These tools check the requirements given in standards documents. If you are unhappy
with these requirements you should address your complaints to the relevant committee.
Don’t shoot the messenger.

© 1992-1997 Knowledge Software Ltd Page 4

Chapter 2

User interface and configuration

This chapter covers the details behind the user interface. It also describes the configuration
files used and their structure. Given the information provided here it ought to be possible
for users to reconfigure the tools to support new platforms and standards.

2.1 Organization of the checker

TheOSPC tools read a large amount of information from configuration files. By default,
this information is maintained within a single directory tree structure. This tree structure
subdivides into information specific to each tool, information relating to each supported
standard and information about each supported platform.

Synonyms are used to provide a shorthand notation for various, commonly referred to,
directory names. These synonyms, or aliases, are expanded up to the full pathname when
used withinOSPC. They may also be used in standards, platform and.mccrc files.

ROOT The pathname of the distribution directory. This is used to locate
#include , library and other files. It is determined by the contents
of theINFO /host/locate file (see below).

INFO The directory containing all the configuration information.

PROG The directory containing specific information for the component tool
of OSPCcurrently executing. This subdirectory lies within theINFO
directory, with the same name as the component tool being executed.

PROFILE Root directory for the profile database files.

PLATFORM Contains all the platform profiles information.

Now we will take look at the structure and contents of the main distribution directory. The
way files are located, at runtime, and what they are used for will also be described.

2.2 ROOT/bin

This directory contains the executable programs for all components ofOSPC(mcc, mcl),
and the supporting shell scripts (profadm, c89, ccc, errorrange, etc).

© 1992-1997 Knowledge Software Ltd Page 5

Executables and scripts in theROOT/bin directory may be located by the system in one
of two ways, depending on how theOSPCwas installed.

1 Through thePATH environment variable containing and entry forROOT/bin .

2 Via symbolic links in the/usr/bin directory, mapping to the files given above
(assuming that/usr/bin is already onPATH).

If the PATH environment variable contains an entry ending inchecker/bin the first
method is used (see the Installation Guide for details).

2.3 INFO (ROOT/bin/checkinfo)

This directory contains all of the configuration information used by theOSPC. It is situated
in the same directory as the executables, so the path name of the executing tool can be used
to locate it. WhenOSPC is installed using symbolic links, a link is also created for this
directory.

TheINFO directory contains the following subdirectories:

mcc Static source checker specific data.
Includes default option settings, strings and the C language error file.

mcl Cross module checker specific data. Default option settings, strings,
error file and the template file used in conjunction with host compiled
units.

common Information common to more than one component tool. Includes date
and time format, intermediate code format and extensions for file-
names.

profile The platform and component profiles. Contains all of the information
specific to the supported platforms profiles.

host Information about the host platform.

2.4 ROOT/lib

This directory contains the library files, in various forms, used by theOSPC:

· lib.klc . TheOSPC library in .klc form.

Extra files are added to this directory if the dynamic checking portion ofOSPCis purchased.

© 1992-1997 Knowledge Software Ltd Page 6

2.5 ROOT/include

This directory contains the#include headers specified by various standards. These may
be used in place of the host system headers, if the host system headers are incomplete.

If the dynamic portion ofOSPC has also been purchased there will be an additional
directory, calledinterp . The contents of this directory only apply when dynamic
checking is been performed.

2.6 Default options

Each tool reads in default values for each of the command line options. These are held in
the filePROG/options . The format of this file is one option per line.

If the default option settings require modifying, the local options file, described below, may
be a more appropriate method of achieving the desired result.

Example:

-Align double=8
-ARithrsh-
-BITLohi-
-BITSigned-
-REMark -Check-
-REMark -COnfig <strings etc.>=<filename>
-REMark -ECHO
-REMark -EXtensions { dos SVR4 languages }
-REMark -Forgetall-
-REMark -HDRsuppress+
-REMark -HCI+
-IDent+
-I /ksc/include
-INTErsperse-
-Listing-
-MAXErrors 99
-MAXWarnings 9999
-NAMelength 31
-REMark -Nomsg <error-number>

To change the name of the default options file, read on startup, use the option-COnfig
options=<filename>

By convention the default configuration file contains an instance of each option. Those
options whose values are not being modified occurring as-REMark s.

2.7 Local options file

A local options file contains a series of command line options. This local options file is
read after the default options file has been read. Thus it overrides any settings made in the

© 1992-1997 Knowledge Software Ltd Page 7

default options file. In turn any command line options take precedence over the settings
given in the local options file (since they are processed last).

The local options file is searched for in two places, in the order:

1 The current directory

2 The home directory

Its filename is generated by appending the letters ‘rc’ to the component tool name and
prefixing a ‘.’ character, e.g.,.mccrc .

The format of the local options file follows that of the default options file, one command
line argument per line.

2.7.1 Creating a local options file

The local options file is created using a text editor. It should contain one command line
option per line. These options may add to, or override options contained in any other options
file read previously. In turn these option settings may be modified by command line options.

-I /usr/me/myheads
-List+

In this example the-I option causes the path/usr/me/myheads to be added to the list
of places to be searched when looking for header files. The default for the-List option
may be either on or off. Here we are overriding the default setting to switch the listing on.

The-Forgetall option may be used to undo the effects of previous option settings.

-Forgetall nomsg

This line causes all previously suppressed messages (the effect of the-Nomsg option) to
be reactivated, i.e., the behaviour is the same as if all previous-Nomsg options had never
been given.

2.8 Locating the configuration files

When a component tool, ofOSPCis executed it determines its own name, and the directory
from which it was executed. The executing tool then searches in this located directory for
a subdirectory (or a symbolic link to a directory) namedcheckinfo . All the information
required by the tool is located in this subdirectory (whose name is also available via the
alias INFO). A directory within INFO , with the same name as the tool being executed
(whose alias is available throughPROG), contains configuration information specific to
that tool.

© 1992-1997 Knowledge Software Ltd Page 8

The tool name, prefixed with ‘.’ and suffixed with ‘rc’, provides the name of the local
resource file. So.mccrc is the resource file formcc.

Thus ifmcl is located on the path/usr/bin , the the directory/usr/bin/checkinfo
is searched. The directory/usr/bin/checkinfo/mcl contains the tool specific
information needed bymcl.

Renamingmcl, in the previous example, tolink_kic would cause the common interface
to look for the tool’s specific information in/usr/bin/checkinfo/link_kic and
use a local resource filename of.link_kicrc .

Under Unix thewhich command may be used to find out the full path used by the shell,
in locating the component tool:

% which mcc

This will display the full path name of the copy ofmcc that would be executed, if it were
given as a command to the shell.

2.9 The string configuration files

In order to provide maximum flexibility, the strings generated as output by the tools are
held in configuration files, they are not hard wired into the executables (except for the
copyright message). Placing strings in configuration files, and having the tool read them
on startup, gives the user the option of modifying them to change the format of the output.

The configuration strings are used as the second parameter in a call tofprintf(). It is thus
possible to insert values, supplied by the tool, into some strings. However it is not possible
to insert values that are not present in the original format string, or to change the order, or
type of the specifiers. Care must be taken when modifying the values of these strings.

Some strings are common to several tools, whilst others are specific to one. The common
strings are held in theINFO /common directory and include:

· Date and time format

· Intermediate code information

· File name extensions

Strings specific to each tool are defined in the filePROG/strings .

If, for some reason, any configuration strings file cannot be found, default values, stored
internally by the tool, are used.

© 1992-1997 Knowledge Software Ltd Page 9

2.9.1 Layout of string configuration file

String files have a fixed layout. The tool will complain if it is given a string file that has
incorrect layout. The term layout is probably too general a description for what is quite a
simple format. A string file consists of comments (optional), headers and lines of text.

· Any line beginning with a star, ‘* ’, is treated as a comment.

· Lines containing a hash, ‘#’, as the first character may be used to identify header
names (not C header names, but configuration string file string header names). The
hash symbol is followed by an identifier that denotes the name of the header. The
headers group together similar strings, and are useful for locating layout mistakes
in the configuration file.

Headers must occur in a given order. The tools will complain if the headers are out
of order. This can occur because of missing headers, missing text causing headers
to be read as text lines, or simply the headers being out of order.

· The lines following a header form the text associated with that header. Each header
expects to be followed by a predefined number of non-comment lines. These lines
may contain any sequence of characters, including starting with a hash. Stars,
however, still introduce comments, but can be obtained as the first character on a
line by using the escape sequence\0x28 (if using ASCII).

Example:

* Section from the file INFO/mcc/strings
*
* echoed input line (source line) by ’trace input’ option
#ECHO
: %s\n
*
* #line message (lineno, filename)
#LINE
#line %ld “%s”\n
*
#INCLUDE
* #include message (filename) for “ ”
#include “%s”\n
* #include message (filename) for
#include <%s>\n
* string output at end of top level include
\n

2.9.2 Format lines

Once read in the text lines are interpreted as if they occurred as the second parameter of the
C fprintf() library function.

· Escape sequences are converted as they would be by a C compiler.

· Lines ending in\<new-line> are spliced with the following line.

© 1992-1997 Knowledge Software Ltd Page 10

· Whitespace after the last non-whitespace character is significant.

· The maximum width of a text line is 254 characters (yes, the C Standard does specify
that a physical text line may have up to 509 characters).

Note: Escape sequences that occur infprintf() format string literals would normally be
converted by a compiler. A format string read from a file and then passed tofprintf() would
not have had its escape sequences converted. TheOSPCconfiguration file handler converts
escape sequences to mimic the behaviour of string literals contained in source code. Thus
thefprintf() in a string that has had the escape sequences converted, just like a C compiler
would.

2.9.3 Changing a configuration file

The best technique for modifying a string file is to make and test the changes on a copy of
the original file. The-CFG option can be used to read this modified copy. Once the new
file is complete and tested it can be renamed to cause it to become the new, default,
configuration file. It may also be useful to remove the old string by prefixing the line with
a ‘* ’, rather than deleting it. This has the advantage that the conversion specifiers (e.g.
‘%s’) in the original are retained.

2.9.4 Trace option

If a configuration file has been modified and the component tool that reads it objects to the
format, some method of localizing the problem is required. The-TRace config option
causes the contents of the configuration files to be displayed, as they are being read. The
tool displays the default string and the new string, read from the file, in the following form:

‘<‘ default text ‘> := <‘ new text ‘>’

This information, coupled with complaints about out of sync headers, should be sufficient
to solve the problem.

2.9.5 Common alterations

There are several strings in the string configuration files that are commonly modified. We
shall now take a look at a few of them in turn:

Include messages (mcc).

The text output whenmcc encounters anincludedirective follows the#INCLUDEheader
in the file INFO /mcc/strings .

· To stop the includes being displayed comment out all three strings, and insert three
blank lines.

© 1992-1997 Knowledge Software Ltd Page 11

· To stop the extra blank line being output between the includes remove the ‘\n ’ from
the third line.

Error message lead in (mcc).

This lead in can be useful if the system editor can use the error line information to position
itself at the appropriate place in the C source code. The output ofmcccan be made to match
this format by changing the str ing following the#ERRORS header in
INFO /mcc/strings . Note however, the filename and line number cannot be swapped
around because the arguments are passed tofprintf() in a fixed order.

Hierarchy diagram text (mcl)

The strings output in the hierarchy diagram follow the#HIERARCHYheader in the file
INFO /mcl/strings including the characters used to create the lines. Under MSDOS
graphics characters with a single line could be used instead of the double line characters.

2.9.6 Help information

The string file also contains the help text displayed by each tool. Each line of help text is
preceded by a line containing a set of modifier characters that determine whether the option
is displayed, or not.

The text line is displayed either, if the modifier line preceding it is empty (and that includes
white-space characters), or if a modifier character preceding it is also specified in a
-HELPMODoption. The-Detail option is equivalent to-HELPMOD D, hence options
preceded by ‘D’ are displayed in the detailed help. The modifiers allow the help output to
be tailored to the platform the checker is running on, by suppressing any irrelevant options.
Uppercase modifiers are reserved for futureOSPCinternal use, whilst lowercase letters can
be used for a users own groupings.

2.10 Error files

2.10.1 Introduction

The text of all warning and error messages output byOSPC are contained in text files.
Internally within OSPC errors and warnings are represented by numbers. The error file
provides a mapping from these numbers to a line of text. This method allows the severity
level and content of the messages to be altered by the user. If no error file contains the sought
after value the error number itself is given.

Here is a section of the error file that is used with the ISO C profile:

*
* ansic/errors Lastmod 24 Oct 91 DJ
* Created Jul 87 SAC
*
#define info 0 very common, ignorable messages

© 1992-1997 Knowledge Software Ltd Page 12

#define warn 2
#define impldef 4 implementation defined behaviour
#define impundef 5 implicitly specified as undefined behaviour
#define expundef 5 explicitly specified as undefined behaviour
#define usercont 8 user error
#define recover 8 recoverable (semantic) error
#define constraint 9 standard constraint violations
*
* In the following case we must not generate code, or mce gets
* upset
*
#define expundef_err 9 explicitly undefined behaviour,but no code
#define fatal 9 general fatal error

* Errors caused by bad input from the user
1 userfatal Filename expected
2 usercont Warning previous output filename overridden
5 usercont Unknown directive
6 recover Argument out of range
8 userfatal Invalid filename

12 usercont Parameter too long - truncated

29 fatal Unexpected end of configuration file
* ...
234 recover \\x... escape sequence has no hex digits -\

zero value assumed
234 constraint [C] \\x... escape sequence has no hex digits
235 expundef [U] undefined escape code\\

3.1.3.4 Character constants
244 constraint [C] character constant contains too many\

characters\\ 3.1.3 Constants
245 constraint [C] illegal character constant\\

3.1.3.4 Character constants
249 constraint [C] character constant exceeds source line
259 constraint [C] string literal exceeds source line
261 recover end of included file encountered\

inside comment - comment assumed to close

2.10.2 Who uses error files

Any standards or platform profile can refer to an error file. In fact, unless they do not refer
to such a file they will not be able to generate meaningful messages. The convention is for
messages associated with particular profiles to be held in error files in the same directory
as that profile. An exception to this rule is the error file associated with C language
problems. This is kept in the same directory asmccspecific files.

The -ERRfile option gives the full pathname of an error file. The message associated
with a particular error number is found by searching all of the files given in-ERRfile
options (the error handler builds a table of contents the first time the files are read; to speed
up subsequent processing).

The two scriptserrorrange anderrornumber can be used to locate messages associated
with particular error numbers and to display the error numbers currently being used.

A tool is not limited to using one error file. Any number of error files may be used.
Separating the error messages out into several files provides several advantages:

· The error files can be kept to a manageable size.

© 1992-1997 Knowledge Software Ltd Page 13

· The tool only needs to read the relevant files.
The errors associated with a given platform need only be used if the platform is
referenced. This saves processing time, and enables the profiles to be modularized
by placing the error files in the appropriate profile directory.

· Error messages are easier to maintain.
Users may create their own error files without having to interact with those provided
as part ofOSPC. Thus when new updates are received it is simply a matter of
copying over the new files without worrying what effect they will have on user
created files (provided the error numbers used fall within the allowed limits).

It is a simple matter to change the text associated with any of the errors reported byOSPC.
A new error file can be created, with an entry for each of the messages that needs to be
changed (in the format given in the section above). By adding a-ERRfile option to a
local options file, or the default configuration file, the new message text will replace the
old.

The error files are processed in the order that they are specified on the command line (or in
options files). Within a single file, the error message with the lowest reportable error (will
depend on the presence of any-SUppresslvl option) will be selected. If the same error
number occurs in a later file, the later entry will always take precedence, regardless of their
relative error levels.

Each tool’s default error message file is found in its specific (PROG) directory. The profile
directories also contain error files for errors that are specifically associated with that profile
(e.g., complaints about reserved names).

2.10.3 Format of the error file

An error file is made up of three different types of lines:

1 Comment lines. All lines containing a star, ‘*’, as the first character are treated as
comments. Blank lines are also ignored.

2 #define lines. This is a simple mechanism that allows a name to be associated with
a number. A simplistic form of object like macros.

3 Message lines. These provide the actual mapping between error number and text
messages. Within a message line there are rules for breaking up the text into various
components.

2.10.4 Define line

A define line consists of four components, separated by whitespace:

1 #define . Introduces the directive.

© 1992-1997 Knowledge Software Ltd Page 14

2 An identifier. This can consist of alphabetic characters, and underscore or a period
(a slight extension on the rules for C identifiers).

3 A single digit number. The number is substituted for the identifier in each of the
message lines it occurs in.

4 An optional comment. Not necessarily preceded by a star, ‘* ’

#define syntax 9 Highest error level available

These lines thus form a close approximation to the definition of object like macros in C.

2.10.5 Message lines

These lines have three main components:

1 The error or message number.
This may contain between one and four digits, and must occur in ascending order
within each error file.

2 The error level.
May consist of a single digit, or the name of an identifier that previously appeared
in a define line.

3 Characters making up the message.
The characters are treated as afprintf() format string, and can extend over several
lines by preceding new-line with a backslash ‘\’. A reference to a standard can be
incorporated by preceding it with two back slashes, followed by newline. Since
the messages are used as the format string for a call tofprintf() specifiers such as
%s should only be included in an error message if they were also present in the
original. Otherwisefprintf() will expect arguments that it haven’t been passed,
resulting in unpredictable behaviour. Note%% represents a percent character in
standard C fashion.

429 constraint [C] argument is not arithmetic\\

REFERENCE - ISO 6.3.2.2 Function calls

2.10.6 Error number ranges

The error numbers are split into logical chunks, with different ranges being used for different
types of errors. The shell scripterrorrange can be used to list the error numbers used by
each error file (use theall option to include the language errors in this listing. The
following table summarizes the ranges into which various categories of problem fall:

© 1992-1997 Knowledge Software Ltd Page 15

Error
Range Use

1-199 Errors resulting from command line options
200-949 C language errors
950-980 System errors (e.g. disk full)
981-1000 Internal errors
1001-1199 C language extensions
1200-1299 Incorrect calls to the ISO C library
1300-1499 Coding standard issues

1500-1699
Special range of errors used by the conditional error
mechanism (C++ and K&R related errors)

1700-1899 Lint like problems
1900-1999 Identifier usage problems
2000-5999 Reserved for current and future use byOSPC
6000-9999 User selectable error numbers

2.11 Location of host related files

The file INFO /host/locate specifies where other files, likely to be referenced by the
users code, is located. It has the following entries, each on separate lines.

1 Directory containing the include files

2 Library directory

3 The name of a file containing command line options. This file is intended to hold
host specific information, such as defines required by the host header files.

2.12 Hierarchy control files

When generating a hierarchy diagram from the input files,mcl displays all the functions
that each function references. Having all the available information displayed can be
overwhelming. It is not possible to see the wood for the trees.

The hierarchy control file provides a means of cutting out unwanted information. The user
can specify:

· Files that should not appear in the hierarchy.

· Whether objects should appear.

· How the symbols should be displayed

© 1992-1997 Knowledge Software Ltd Page 16

The file consists of a series of a series of lines with the following options (only the first
character in the option names is significant).

2.12.1 Control file options

The following is a list of the options that may occur in a hierarchy control file.

* Lines starting with a star are treated as a comment.

All <unit> Display the unit and routine name for each of the functions called
in <unit> , and trace through each of the routines they call. This
is the default action for a unit.

Dots Put “etc ...” on the same line as the previously displayed function.
The default is to place this string on the next line.

Follow <unit> Display the unit-less name of the function, and follow through the
calls it makes.

Group Group object names together. Places all variable names in a comma
separated list on one line. The default is to give one object name
per line.

Ignore <unit> Ignore name. No calls to functions in this translation unit are
displayed. Neither are any calls to functions called by functions in
this unit.

Name <unit> Display the name of functions that are referenced in this unit, but
ignore any functions that they reference.

Trace <unit> Trace references to functions outside of this unit, but don’t display
the names of externals in this unit. This is used to stopcmain()
being displayed, but ensuremain() (and all the functions it calls)
appear in the hierarchy.

Unit <unit> Display the name of the functions, prefixed by their unit name. Any
functions called from this unit are ignored.

Vars When given this option removes the names of objects from the
hierarchy diagram. The default is to display the names of objects.

The unit control options can be summarized in the following table:

© 1992-1997 Knowledge Software Ltd Page 17

Display

Unit + Name Name only Nothing

Follow
calls All Follow Trace

Ignore
calls Unit Name Ignore

© 1992-1997 Knowledge Software Ltd Page 18

Chapter 3

Source code checker (mcc)

3.1 Introduction

This chapter takes a detailed look at all themcc options. The standard help text does not
list all the available options. Acomplete list can be obtained by using the-DETail option.

mcc -DETail

Most of the options considered to be ‘details’ relate to platform specific functionality. Thus
the setting of these options would normally be controlled by the platform profiles.

3.1.1 Environment interface

mcc uses two environment variables,HOMEandMCCOUTPATH(these names are held in
themcc strings file). TheHOMEvariable, if set, is used to locate the .rc file used bymcc.
The second environment variable, if set is used to override the setting of any-OUTPUT-
Path options that may have occurred in any options files read in. It does not override the
setting of an-OUTPUTPath that occurs on the command line.

At the end of processingmccprovides a return code to the host OS on the status of the work
performed. The value of this code follows the conventions used bycc and has a simple
zero/non-zero value.

The file host/locate contains two lines. The first is the path used to locate include
files. The second is the root path used to locate standard includes and the library .klc files
used bymcl.

3.2 Options

This section lists all of the options available in the compiler portion ofOSPC.

Notation: In this section the minimum abbreviation for each of the options is given by the
portion in capital letters. That is one or more of the lower case letters may be omitted.

Align Specify address byte boundary for objects of that type

SYNOPSIS

© 1992-1997 Knowledge Software Ltd Page 19

Align <type>=<bytes>

DESCRIPTION

Alignment restrictions, or lack of thereof, are brought about by limitations
or efficiency requirements in the underlying target cpu. The three most
common cases are (1) no restriction, (2) scalars larger than 1 byte must start
on an even address boundary, and (3) scalars must start on an address that
is an exact multiple of their size (RISC processors usually have this restric-
tion).

<type> is one ofchar, short, int, long, float, double, ldouble, bitfield, dataptr,
codeptr or param. This option specifies the byte boundary for each type
when addresses are assigned to objects and offsets calculated for members
within structs. Param gives the minimum alignment of parameters on the
system stack (the actual alignment of parameters is taken to be the maximum
of the parameter alignment and the alignment for that type).

The C standard imposes no requirements on the alignment of objects. Except
that giving an alignment for a type will also cause any qualified orunsigned
variants of that type to take the same alignment.

mcc assumes that the same alignment requirements apply to members of
structures, parameters (subject to the minimum alignment specified by the
param type) and individual objects.

Note: mcemay have been built to expect a stricter alignment of datatypes
than used bymcc. Thus specifying a less strict alignment may causemce
to flag an error.

EXAMPLE

mcc prog -A char=1 -A float=4

mcc prog -A int=5

PROFILE

This option is set by the cpu profile.

Apiusage Generate information on API usage

SYNOPSIS

APIusage±

© 1992-1997 Knowledge Software Ltd Page 20

DESCRIPTION

Switching this option on causes a.api file to be generated. Information
on identifiers encountered in the source code, and specified in an API
database, is written out to this file. References on all externally visible
identifiers is also written out.

By combining the.api files from each translation unit making up a
complete application it is possible to deduce the API’s used by that applica-
tion.

EXAMPLE

mcc prog -APIusage+

PROFILE

This option is set as part of the default startup information.

Ar ithrsh Right shift (>>) to be arithmetic

SYNOPSIS

ARithrsh±

DESCRIPTION

The result of shifting a signed quantity right is specified as being implemen-
tation defined in the C standard.

This option affectsmcc in two ways. It is used by the platform profile
machinery to decide when arithmetic right shifts should be flagged. It also
selects the type of code generated for use by the executor.

Switching this option off causesmcc to generate code that performs logical
right shifts. That is, zeroes are shifted into the vacated top bits.

When this option is on arithmetic right shifts are performed. In this case
one’s are shifted into the vacated top bits if the top most bit was originally
set.

EXAMPLE

mcc prog -AR+

PROFILE

© 1992-1997 Knowledge Software Ltd Page 21

This option is set by the compiler profile.

Assert Perform #assert from the command line

SYNOPSIS

ASsert <identifier>(<identifier>)

ASsert <identifier>(<number>)

DESCRIPTION

One of the System V.4 extensions supported is the use of#assert. This option
allows assertions to be predefined on the command line, similar toD for
macro definitions. The arguments for an assertion specified on the command
line is restricted to a single token.

If the argument is given on the command line, rather than from an options
file, the second argument may need to be quoted to avoid interactions with
the shell.

This option is not fully specified in the SVR4 documentation. The specifi-
cation for themcc implementation was obtained by experimentation.

EXAMPLE

mcc prog -ASSert cpu(68000)

mcc prog -ASSert “cpu(68000)”

The following two commands are equivalent. The first form is supported
for compatibility with SVR4:

EXAMPLE

mcc prog -ASSert-

mcc prog -Forgetall ASSert

PROFILE

This option is set by the compiler profile.

© 1992-1997 Knowledge Software Ltd Page 22

Bigendian Indicate memory storage ordering of multi-byte objects

SYNOPSIS

BIGendian±

DESCRIPTION

The ordering of bytes within multi-byte quantities is not defined by the C
standard.

Switching this option off causesmcc to treat multi-byte quantities as being
stored in little endian mode.

The setting of this option does not affect the generated code. Its purpose is
to allow mcc, in conjunction with platform profile information, to flag
potential problems caused by different byte orderings.

EXAMPLE

mcc prog -BIGendian+

PROFILE

This option is set by the cpu profile.

Bitl ohi Bit-fields allocated lo-bit to hi-bit

SYNOPSIS

BITLohi±

DESCRIPTION

The ordering of bit-fields within a unit of storage is given by the C standard
as implementation defined. Allocation may be low to high or high to low
within a storage unit.

This option allows the user to specify which ordering should be used. There
is no platform profile interaction.

EXAMPLE

© 1992-1997 Knowledge Software Ltd Page 23

The following structure members will occupy different bits of the storage
unit, depending on the order that bits are used.

struct mem_reg {

signed int status : 4;

unsigned int count : 6;

}

mcc prog -BITL+

PROFILE

This option is set by the compiler profile.

Bitoverlap Can bit-fields occupy the same storage unit as a char

SYNOPSIS

BITOverlap±

DESCRIPTION

Switching this option on causes bit-fields to be allocated space, where
possible, in the same storage unit as achar.

EXAMPLE

mcc prog -BITOverlap+

Bitsigned Plain bit-fields to be signed

SYNOPSIS

BITSigned±

DESCRIPTION

The signedness of a bit-field defined with just theint type specifier is given
as implementation defined by the C standard.

Switching this option on causes such bit-fields to be treated as if they had
been declared assigned int. When this option is off bit-fields are treated as
if they had been declaredunsigned int.

© 1992-1997 Knowledge Software Ltd Page 24

EXAMPLE

In the following structure the second member be a signed int or unsigned
int.

struct tb {

signed int f1 : 4;

int f2 :2;

unsigned int f3 :3;

}

mcc prog -BITS+

PROFILE

This option is set by the compiler profile.

Charconst Number and order of letters in character constant

SYNOPSIS

CHARConst <letter-sequence>

DESCRIPTION

This option is used to specify the number of characters in a character constant
and the order in which these characters are held internally. The C standard
specifies that if more than one character is present the behaviour is imple-
mentation defined.

The option works by assuming the character sequence abcdefg... (for as
many characters as are supported by the compiler). The order given in the
option provides the mapping to be used in reading from the character
constant read to its internal value.

EXAMPLE

mcc prog -Charc xabcd

The character x is used to denote the end from which zero bytes are added
for character constants containing less characters than the maximum sup-
ported. In the above case the character constant’ab’ would have two bytes,
containing zero, added before thea character. Had the option-CHARC
abcdx been given the zero would have been added after theb character.

© 1992-1997 Knowledge Software Ltd Page 25

mcc prog -Charc xba

In the above case the characters are stored, in anint object in the reverse
order to which they appear. Depending on more than one character being
allowed in a character constant does reduce portability. This information is
used in the source and target profile flagging to highlight places where
behaviour will differ.

mcc prog -Charc x000d

Here there may be up to four characters in a character constant, but only the
last character is used in the final value. The zeroes are needed to tellmcc
that four characters may occur (a letterd on its own may have been caused
by a typing error).

PROFILE

This option is set by the compiler profile.

Charset ASCII or EBCDIC character set

SYNOPSIS

CHARSet <letter-sequence>

DESCRIPTION

This option is used to specify the representation used to give numeric values
to characters. Although the C standard requires that characters from ISO
646 be used it does not define their numeric value.

The two representations currently supported are ASCII and EBCDIC. The
setting of this value will affect the values of characters in strings and
character constants.

EXAMPLE

mcc prog -Charset ebcdic

PROFILE

This option is set by the compiler profile.

© 1992-1997 Knowledge Software Ltd Page 26

Check Perform syntax & semantic checks only

SYNOPSIS

CHECK±

DESCRIPTION

Switching this option on causesmcc to perform syntax and semantic checks
but not to generate .kic files. This option may speed up the execution ofmcc
but because no .kic file is generated it will not be possible to perform cross
unit checking.

EXAMPLE

mcc prog -C+

Checkid Specify an identifier checking filename

SYNOPSIS

CHECKId <filename>

CHK <filename>

DESCRIPTION

The <filename> is taken as the file containing information about reserved
identifiers. Multiple identifier files can be specified, and identifiers will be
checked against the information contained in each of them in turn.

If <filename> cannot be opened, or is not in the correct format an error
message is displayed.

This option interacts with platform profiles in that if the same <filename>
occurs in both the source and target profiles no checking is done using the
contents of that file.

Note: The error reporting mechanism will only report a given error number
once for each token. Thus if more than one checkid file flags a given
identifier with the same error number only one of them will appear (since
every error number should have the same text associated with it this should
not cause a problem).

EXAMPLE

© 1992-1997 Knowledge Software Ltd Page 27

mcc prog -CHECKId PROFILE/standard/ansic/ident

PROFILE

This option is set by the standards and O/S profiles.

CODES Switch on various coding standards checks

SYNOPSIS

CODES <letter-sequence>

DESCRIPTION

There are many checks that can be performed that do not, strictly speaking, fall under the
category of lint like checks. Such constructs are usually described in company coding
standards. The checking for such constructs is controlled by this option.<letter-se-
quence> may be one of the following.

CASTFlags those situations where implicit casts could cause a loss of
information.

COMMENTCauses a warning to be generated if aif, while, do, switchstatement,
or the start of a function definition is not preceded by a comment.
Note: Switching this option on implicitly switches on the checking of
code layout.

FLOWSwitches on extra checks involving the flow of control, i.e., multiple
exits from a function andbreakappearing in anif statement.

LAYOUTChecks the layout of statements (consistent indentation and use of
braces) and identifier declarations (only one per line).

LOOPSPerform checks involving the control variable infor andwhile state-
ments.

EXAMPLE

mcc prog -CODES loop prog.c

PROFILE

This option is not set by any profile.

© 1992-1997 Knowledge Software Ltd Page 28

Conderr Specify conditional error file

SYNOPSIS

CONDErr <filename>

CErr <filename>

DESCRIPTION

The conditional error mechanism is a method of flagging language con-
structs that are applicable to the source or target platform, but not both. Error
numbers within the conditional error file are used, provided the error file
either appear in the source platform profile, or the target platform profile,
but not if it appears in both.

This is the mechanism used to flag language constructs that differ between
K&R and ISO C.

EXAMPLE

mcc prog -CONDerr PROFILE/standard/kandr/conderrs

PROFILE

This option is set by the standard and O/S profiles.

Config Specify a configuration filename

SYNOPSIS

COnfig <tag>=<filename>

CFG <tag>=<filename>

DESCRIPTION

Several configuration files are used by the tools. These files contain,
amongst other things, strings output and default options. The tag may be
one of:

• datetime . The names of the months and format for outputting the
date and time.

© 1992-1997 Knowledge Software Ltd Page 29

• extensions . The extensions used for c, .kic, .klc files etc.

• opcodes . Information about the intermediate code (for display
purposes).

• strings . The strings for all the output produced by the tool.

• options . The default option settings.

• locate . The location of the various special files, e.g. libraries.

If the file cannot be opened or is not in the correct format an error message
is displayed and processing stops.

EXAMPLE

mcc prog -COnfig strings=/home/usr/fred/misc/newstrings

PROFILE

The tools always read files holding this information. This option provides
a mechanism for replacing the files actually read.

D Perform #define from the command line

SYNOPSIS

D <name>

D <name>=

D <name>=<string>

D <name>=<number>

DESCRIPTION

This option allows the user to define C macros from the command line.
These macros are treated as if they formed the first lines of the source file
being compiled.

There are three forms of this option:

D ident is equivalent to the C:

© 1992-1997 Knowledge Software Ltd Page 30

#define ident 1

andD ident=string is equivalent to the C:

#define ident string

Note:D ident= is equivalent to:

#define ident

Whitespace may not be used to separate the= character from the preceding
identifier or the following sequence of characters.

PROFILE

This option is set by the compiler profile.

Detail Detailed rather than brief help

SYNOPSIS

DETail±

DESCRIPTION

Only those options commonly modified by users are given in the default
help display. The other options are either better selected through the use of
platform profiles, or are only applicable to certain hosts (e.g. DOS). This
option causes these other options to be displayed, and is equivalent to
-Helpmod D .

EXAMPLE

mcc -det+

Echo Echo given text to standard output

SYNOPSIS

ECHO <text>

DESCRIPTION

The rest of the line, starting at the first non-whitespace character is echoed
to the screen. A-ECHOon its own displays a newline.

© 1992-1997 Knowledge Software Ltd Page 31

This option may be used to display helpful information when options are
being processed from a via file.

Note that it cannot be used on the command line.

EXAMPLE

If abc.via contains:

-ECHO Created on 9 Aug

-ECHO

then

mcc -via abc.via

causes the following lines to appear (the newline cannot be seen):

Created on 9 Aug

Err file Specify error file name

SYNOPSIS

ERRfile <filename>

DESCRIPTION

When an error needs to be reported a list of files are searched by the error
reporting machinery. This option adds a new filename to the list of files
searched.

If <filename> does not exist a warning is given and processing continues.
If an error file is not available any warning or error messages relating to that
file will take the form of an error number.

EXAMPLE

mcc prog -ERR new.err

PROFILE

This option is set by most profiles.

© 1992-1997 Knowledge Software Ltd Page 32

Errn umber Switch on output of error numbers

SYNOPSIS

ERRNUMBER <error-number>

DESCRIPTION

In order to switch off particular errors, with the-NOmsg option, it is
necessary to know the error number associated with a particular message.
Switching this option on causes the error number to be given along with the
appropriate message.

EXAMPLE

mcc prog -ERRN+

Evalorder Specify order in which expressions are evaluated

SYNOPSIS

EValorder <letter-sequence>

DESCRIPTION

The C standard allows implementations the freedom to evaluate expressions
containing side effects in any order. Code that relies on a given order of
evaluation is very non-portable. The <letter-sequence> part of this option
provides a method of indicating an order of evaluation. If the <letter-se-
quence> is the same on the source and target platform it is not necessary for
mcc to flag expressions containing side effects.

A -EValorder option that is followed by a letter sequence of? is assumed
to have an unknown order of evaluation (more probably an order that varies,
depending on the complexity of the expression and contents of the cpu
registers).

EXAMPLE

mcc prog -EValorder LR

PROFILE

This option is set by the compiler profile.

© 1992-1997 Knowledge Software Ltd Page 33

Extensions Enable extensions

SYNOPSIS

EXtensions <letter-sequence>

DESCRIPTION

Some language extensions have become so common on certain hosts that
the majority of compilers on those hosts support them.OSPCsupports the
most common extensions. They have been broken down into various
categories. The<letter-sequence> may be one of the following:

DOS Allow near, farandhugequalifiers

C9X Allow some C9X (Draft Revised C standard) features to be enabled.

CPP Allow C++ languages features commonly supported by C compilers,
for instance// style comments.

GCC Support a variety of GCC extensions, includingtypeof , attrib-
ute , and some support forlong long .

JAVAFlag C constructs that are not available, or behave differently, in Java.

language
Supportfortran andpascalfunctions

SVR4
Support SVR4 extensions, including#assert ion’s and#ident .

slashwhite
Allow whitespace between \ and new-line.
The standard requires that the line splice character (\) be immediately
followed by a new-line, if it is to have a splicing effect. Switching this
option on relaxes this requirement by allowing whitespace to occur
between it and a new-line.

EXAMPLE

mcc prog -EXtensions gcc

PROFILE

This option is set by the compiler profile.

© 1992-1997 Knowledge Software Ltd Page 34

Fnamechar Specify the characters that may occur in an include filename

SYNOPSIS

FNAMEChar <letter-sequence>

DESCRIPTION

The list of characters given are those that are allowed to occur in an include
filename.

The configuration file holds the values allowed by ISO C. This option adds
to this set.

EXAMPLE

mcc prog -FNAMEChar “$%!/”

PROFILE

This option is set by the standards and O/S profiles.

Fnamelen Maximum include filename length

SYNOPSIS

FNAMELen <length>

DESCRIPTION

Different operating systems have differing restrictions on the maximum
number of characters allowed in the basename of a filename. This option
specifies the maximum number of characters that may occur in an include
filename.

Any include file longer than this length with be flagged.

EXAMPLE

mcc prog -FNAMELen 14

PROFILE

This option is set by the standards and O/S profiles.

© 1992-1997 Knowledge Software Ltd Page 35

Forgetall Forget all arguments of option given so far

SYNOPSIS

Forgetall <option>

DESCRIPTION

Some options do not have single values, they accumulate a list of values.
For instance an-I option does not undo the effects of any prior-I option.
It adds a new path to the list of existing paths. The-Forgetall option
enables lists of values to be forgotten. It must be applied to an option that
takes lists of values (it may also be applied to options that accept string
arguments). When applied to the following options it has the specified
effects:

Align Use default alignments.

ASsert

CODESForget previously enabled coding standard checks.

D Forget previous definitions.

Errorfile

EXtensionsForget previously enabled extensions.

I Forget include paths given so far.

LOGfile Cancel request for logfile.

NOmsg Reinstate any previously suppressed error numbers.

Output Use default output filename.

PAth Cancel previous prefix.

RETurn Cancel information on identifiers that cause function termination.

Size Uses default sizes for scalars.

STRUCT

The main use of this option is in overriding any options given in the default
or possibly the local options file.

© 1992-1997 Knowledge Software Ltd Page 36

EXAMPLE

Hcexept* Treat header as being exceptions to host compiled

SYNOPSIS

HCexeptI <header>

DESCRIPTION

This option is of use when, during a particular compilation, all system
headers have been marked as host compiled. It may be simpler to mark all
system headers as being host compiled and have a few exceptions than list
all the system headers that are host compiled.

Hci* Treat headers included from host compiled headers as host compiled

SYNOPSIS

HCI±

DESCRIPTION

Switching this option on causesmcc to regard header files included from
within host compiled headers as also being host compiled.

Switching this option off causesmccto not treat nested include files as being
host compiled.

For more details on host compilation see the later chapter in this manual.

PROFILE

This option is set by the hostlib ‘misc’ profile.

Hclib* Is the system library to be host compiled

SYNOPSIS

HCLIb±

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 37

Switching this option on causesmccto regard the contents of system headers
as host compiled.

PROFILE

This option is set by the hostlib ‘misc’ profile.

Hdrsuppress Suppress warnings while processing system headers

SYNOPSIS

HDRsuppress±

DESCRIPTION

Sometimes it may be necessary to use a header file other than that supplied
with theOSPC. These alternative headers may not be strictly conforming.
Declarations and definitions within these headers may be flagged bymcc.
However, the user does not always want, or have the option of changing
these headers.

Switching this option on causesmccnot to display any messages about the
contents of systems headers.

Note: A constraint error within a system header will not be flagged.

EXAMPLE

mcc prog -HDR+

PROFILE

This option is set by the compiler and profiles.

Headers Specify a valid-header file

SYNOPSIS

HEADers <filename>

DESCRIPTION

The named file, in binary data base form, contains a list of valid header
names, i.e., those names that can occur between chevrons (< >) in an

© 1992-1997 Knowledge Software Ltd Page 38

#include preprocessor directive without causing a warning message to
be generated.

This options differs from the-CHK option in that it is source and target
platform independent.

EXAMPLE

mcc prog -HEADers PROFILE/standard/ansic/headers

PROFILE

This option is set by many profiles.

Helpmodify Set modifiers for displayed help

SYNOPSIS

HELPMod <letter>

DESCRIPTION

In the default help display only the generic options are given. The output of
each line of help text (contained in the config file) is controlled by a set of
modifiers. Each help text line can either be always displayed, or whenever
one of the modifiers associated with it is given in this option. The following
modifiers are currently supported:

D Detailed help (display everything)

H Host compiled options

M Memory manager options (only relevant to MSDOS platforms)

EXAMPLE

mcc prog -HELPMod HDM -help

Hostcomp* Mark the contents of a header as being host-compiled

SYNOPSIS

HOSTComp <header-name>

HC <header-name>

© 1992-1997 Knowledge Software Ltd Page 39

DESCRIPTION

Host compilation allows routines compiled by the host compiler to be called
from the executor. The header name need not include the ‘.h’, a ‘.h’
extension will be added by default.

More details on host compilation are provided in the manual on dynamic
checking.

EXAMPLE

mcc prog -HOSTComp stdio

I Specify directory to search for #include files

SYNOPSIS

I <filename>

DESCRIPTION

The specified directory is added to the list of directories used by the
#include file search algorithm.

If more that one-I option is given then the paths are searched in the order
in which they are encountered.

EXAMPLE

mcc prog -I lib/ourheader

Ident Check declarations against reserved list

SYNOPSIS

IDent±

DESCRIPTION

Switching this option on causesmcc to check the declaration or definition
of all identifiers against the list of names given as reserved in the platform
profile being used. The list of reserved identifiers is read from the files
specified by the-CHECKId option.

© 1992-1997 Knowledge Software Ltd Page 40

Note. Reserved identifiers that are declared in system header files are not
flagged.

EXAMPLE

mcc prog -ID-

PROFILE

This option is set by the standards profile.

Idfollowchars Identifier extension characters

SYNOPSIS

IDFOLLOWChars <letter-sequence>

DESCRIPTION

Some platforms allow the set of characters that may occur within an identifier
to go beyond that required by the C standard. This options allows these
extended identifier characters to be specified.

Note: It is possible that making additions to the set of characters that may
occur in identifiers can change the way that the input source is tokenize. For
instance:

#define abc$

could define a macro named abc with body$, or abc$having no body.

EXAMPLE

mcc prog -IDFOLLOWChars “@\$”

PROFILE

This option is set by the compiler profile.

Idstartchars Characters that can start an identifier

SYNOPSIS

IDSTARTChars <letter-sequence>

© 1992-1997 Knowledge Software Ltd Page 41

DESCRIPTION

Some compilers allow the set of characters that may occur at the start of an
identifier to go beyond that required by the C standard. This options allows
these extended identifier characters to be specified.

Note: Because of environment variable expansion within via files the dollar,
$, character should be quoted.

EXAMPLE

mcc prog -IDSTARTChars “\$”

PROFILE

This option is set by the compiler profile.

Intersperse Intersperse listing with generated code

SYNOPSIS

INTErsperse±

DESCRIPTION

As well as checking the source code and writing symbolic information to
the .kic file mcc generates P-codes from the C source statements and
initialisers. These P-codes are written, in compressed form, to the .kic file.

Switching this option on and also enabling the listing option causes a
readable form of these P-codes to be written to the listing file. The P-codes
are written in text form and appear close to the statements to which they
refer.

This is not an option that is likely to be used by the majority of users. It exists
because it was of use during the development of theOSPCand the design
decision was taken not to have any ‘magic’ options for internal use.

EXAMPLE

mcc prog -INT+ -L+

INTrep Internal representation of integral quantities

SYNOPSIS

© 1992-1997 Knowledge Software Ltd Page 42

INTrep <letter-sequence>

DESCRIPTION

Two’s compliment notation is not yet universal. Some processors use other
methods of representing integral values. This option allows the the two most
common alternative representations to be selected.

<letter-sequence> may be one of:1cmp, 2cmp or smag. Representing 1’s
compliment, 2’s compliment and signed magnitude notation, respectively.

EXAMPLE

mcc prog -INTRep 1cmp

PROFILE

This option is set by the cpu profile.

L IM its Specify the values of certain limits

SYNOPSIS

LIMits <identifier>=<value>

DESCRIPTION

This option is used to specify the value of certain compile time limits.
Numeric literal that exceed these limits will be flagged. Possible identifiers
include:

CALLARGS

The number of arguments in a function call.

CASELABELS

The number of case labels in aswitchstatement.

DBLMANMAX, DBLMANMIN, DBLEXPMAX, DBLEXPMIN

DBLSIGDIGIT, FLTSIGDIGIT, LDBLSIGDIGIT

Number of siginifcant digits in adouble, float, or long double.

ENUMCONST

© 1992-1997 Knowledge Software Ltd Page 43

The number of constants in anenumdefinition.

EXACTFLTREP, EXACTDBLREP, EXACTLDBLREP

EXTERNALIDS

The number of externally visible identifiers.

FLTMANMAX, FLTMANMIN, FLTEXPMAX, FLTEXPMIN

FUNCPARAMS

The number of parameters in a function declaration or definition.

INCLUDEDEPTH

The maximum nesting of#includedirectives.

INVOKARGS

The number of arguments in a macro invocation.

LDBLMANMAX, LDBLMANMIN, LDBLEXPMAX, LDBLEXPMIN

MACRODEFS

The number of macro definitions.

MACROPARAMS

The number of parameters in a macro definition.

NESTCONDINCL

The nesting of conditional compilation (#if ... #endif) directives.

NESTDECLPAREN

The number of parenthesis in a declaration.

NESTDECLSPEC

The number of specifiers in a declaration.

NESTEXPRPAREN

The nesting of parenthesis in an expression.

© 1992-1997 Knowledge Software Ltd Page 44

NESTSTRUCT

The level to which structures are defined within each other.

NESTSTMT

The nesting of compound statements.

OBJSIZE

The size, in bytes, of an object.

SIGCINTERNID

The number of significant characters in an identifier with internal linkage.

SOURCELINE

The length of a logical source line.

STRINGLEN

The number of characters in a string token.

EXAMPLE

mcc prog -LIMITs MACROBODY=33

PROFILE

This option is set by the compiler profile.

L int Perform lint like checks

SYNOPSIS

LINt±

DESCRIPTION

Switching this option on causesOSPCto perform lint like checking on the
source. This checking will flag constructs, which although strictly conform-
ing C code, are often unintended by the software developer, ie probable
programmer errors.

This option also enables the checking of code layout.

© 1992-1997 Knowledge Software Ltd Page 45

EXAMPLE

mcc prog -LIN+

Listing Generate a listing file

SYNOPSIS

Listing±

DESCRIPTION

Switching this option on causes a list file to be generated.

A listing file contains the preprocessed source of the input file plus any
associated error or warning messages.

The source file name is used to create a listing file, by substituting a .lst for
the .c suffix (or implied .c if none is given).

EXAMPLE

mcc prog -L+

Logfile Specify a log file name

SYNOPSIS

LOGfile <filename>

DESCRIPTION

Causes all of the characters that are sent to standard output to be sent to the
named file. If the named file consists of the plus, ’+’, character then the log
filename is constructed from the name of the source file currently being
processed.

EXAMPLE

mcc prog -LOG prog.log

© 1992-1997 Knowledge Software Ltd Page 46

MAPfile Generate a map file

SYNOPSIS

MAPfile±

DESCRIPTION

Switching this option on causemcc to generate a.map file. This gives the
sizes of all file scope objects and the total amount of local object storage
used by the declarations within each function.

EXAMPLE

mcc prog -MAP+

Maxerrors Specify maximum number of errors

SYNOPSIS

MAXErrors <number>

DESCRIPTION

A run of mcc that results in large numbers of error messages usually occurs
because of some large cascading problem. This option enables the maxi-
mum number of allowable errors to be specified. Once this limit is exceeded
mccstops processing the current source file.

EXAMPLE

mcc prog -MAXE 44

PROFILE

This option is set by the tool profile.

MaxwarningsSpecify maximum number of warnings

SYNOPSIS

MAXWarnings <number>

© 1992-1997 Knowledge Software Ltd Page 47

DESCRIPTION

As per-MAXErrors but applies to warning messages

EXAMPLE

mcc prog -MAXW 9999

PROFILE

This option is set by the tool profile.

Metrics Generate a file containing metrics information

SYNOPSIS

METrics±

DESCRIPTION

Switching this option on causesmcc to generate a.met file. This file
contains the raw information used by thedispmet program to generate
software metrics.

EXAMPLE

mcc prog -MET+

M iscid Create a miscellaneous identifier file

SYNOPSIS

MISCId±

DESCRIPTION

This is an ‘internal’ option which is used to create a new ‘platform specific
identifier file’ for a new platform. If theMISCId option is selected, an
identifier which doesn’t match any of the known reserved identifiers is
output to a file. The filename of the destination file is given by replacing
the.c extension of the input file with a.mid extension.

EXAMPLE

© 1992-1997 Knowledge Software Ltd Page 48

mcc aheader -MISCId+

Modsign Sign of % operator with negative operands

SYNOPSIS

MODSign±±±±

DESCRIPTION

The C standard does not define the sign of the result of dividing two negative
values (a restriction is placed on the combined division and remainder
values). There are four possibilities:

+ / + (plus divided by plus), + / -, - / + and - / -. This option allows the sign
of the results of each of these divisions to be specified.

Note: This option is only used to flag possible differences in behaviour
between the source and target platforms. The settings of this option do not
affect the results of any constant folding that may occur.

EXAMPLE

mcc prog -MODSign +—+

PROFILE

This option is set by the compiler or cpu profile.

Namelength Internal name significance

SYNOPSIS

NAMelength <number>

DESCRIPTION

The C standard specifies that at least the first 31 characters of an identifier
are significant. At link time only the first 6 characters need be significant.

This option specifies the number of characters in an internal identifier (that
is with internal or no linkage) that will be treated as significant bymcc. A
warning will be given about two identifiers that differ in non-significant
characters, but they will still be treated as different identifiers bymcc,

© 1992-1997 Knowledge Software Ltd Page 49

EXAMPLE

mcc prog -NAMelen 8

PROFILE

This option is set by the compiler and standards profile.

Nametrunc Internal name truncation

SYNOPSIS

NAMETrunc <number>

DESCRIPTION

Similar to-NAMelength except that two identifiers that differ in non-sig-
nificant characters will be treated as representing the same identifier.

Note that the identifiers will also be written out in truncated form and that
this option will also truncate language keywords.

EXAMPLE

mcc prog -NAMETrunc 16

PROFILE

This option is set by the compiler profile.

Nomsg Suppress a specific error number

SYNOPSIS

Nomsg <errnum>

DESCRIPTION

Rather than editing the error files to reduce the severity of an unwanted error,
this option allows an error number to be disabled for the current invocation
of mcc.

The-ERRNumbers option can be used to print the error number associated
with each message. Alternatively theerrorrange script will list which error
number is held in which error file.

© 1992-1997 Knowledge Software Ltd Page 50

Note: Disabling constraint errors serves no useful purpose. Any messages
given after a suppressed constraint error may be difficult to interpret without
seeing the constraint message.

EXAMPLE

mcc prog -N 43 -N97

OPTimize* Enable intermediate code optimization

SYNOPSIS

OPTimize±

DESCRIPTION

This option is of use when performing dynamic checking for improving the
quality of intermediate code generated. By defaultmccgenerates code that
follows the exact letter of the C standard. When this option is enabled some
casts are not generated (they are known to be redundant on most processors
and faster, special purpose, instructions are generated for common address
calculations.

Note: The code generated when this option is switched on is not orthogonal.
Hence it is not as easy to prove correctness of the generated code.

Ospcdir Specify the output path name for .kic files

SYNOPSIS

OSPCDir <path name>

DESCRIPTION

By defaultmcc puts the .kic files in creates in the current directory. This
can cause the directory to become cluttered (even more so when the stubs
for the dynamic checker are created). This option specifies a path name into
which the .kic files and stub files (object code) should be placed.

Output Specify the output filename

SYNOPSIS

© 1992-1997 Knowledge Software Ltd Page 51

Output <filename>

DESCRIPTION

By default the name of the input source file (stripped of any associated path)
is used as the basis of the generated output .kic filename. This option causes
the given name to be used as the .kic filename.

EXAMPLE

mcc prog -O newfile.kic

Pplist Produce preprocessed listing file

SYNOPSIS

PPlist±

DESCRIPTION

This option is similar to the-Listing option, but with the difference that
the file produced is compilable (assuming that there were no constraint errors
flagged in the original source). A .i is appended to the output filename.

EXAMPLE

mcc prog -PP+

Pragma Specify compiler pragma

SYNOPSIS

PRAGma <letter-sequence>

DESCRIPTION

This option is used to tellmccabout pragmas that have a known effect.mcc
does not know what the effect might be. Rather the information is used to
flag unrecognized pragmas between source and target platforms.

EXAMPLE

mcc prog -PRAGma “pack”

© 1992-1997 Knowledge Software Ltd Page 52

PROFILE

This option is set by the compiler profile.

PREInclude Specify a preinclude file

SYNOPSIS

PREInclude <filename>

DESCRIPTION

A preincluded file is processed like an ordinary include file. Except that
there is no explicit#include in the source code and the include happens
before the file given on the command line is processed.

The main use of this type of include is to enable various system specific
identifiers to be declared, prior to the processing of the users code. For
instance to define function like macros, or objects and functions that may be
predefined by a host compiler.

EXAMPLE

mcc prog -PREInclude linux.stuff

PROFILE

This option may be set in the defaults options file for a given host. It may
also be set in a compiler profile.

Print fspec Specify printf conversions specifiers

SYNOPSIS

PRINTfspec <letter-sequence>

DESCRIPTION

This option is used to tellmccwhich conversion specifiers may occur in the
format string passed to calls toprintf.

EXAMPLE

mcc prog -PRINTfspec “pWQ”

© 1992-1997 Knowledge Software Ltd Page 53

PROFILE

This option is set by the compiler profile.

Psid Specify platform specific identifiers.

SYNOPSIS

PSId <filename>

DESCRIPTION

The <filename> contains information about platform specific identifiers.
These are names of functions, variables or types that are supported by a
platform in addition to the standards it purports to support.OSPCwill warn
about any psids that are present on the source platform but not on the target
and which haven’t been protected with a feature test macro (e.g.,sparcfor
sun4).

This option only reads the source platform specific identifiers.

EXAMPLE

mcc prog -PSId ident_info

PROFILE

This option is set by the standards profile.

PTRScalar Control flagging of pointer/scalar conversions

SYNOPSIS

PTRScalar±

DESCRIPTION

This option is used to control warnings generated as a result of pointer to
integral type casts.

EXAMPLE

mcc prog -PTRScalar+

© 1992-1997 Knowledge Software Ltd Page 54

PROFILE

This option is set by the compiler profile.

Quiet Quiet mode

SYNOPSIS

Quiet±

DESCRIPTION

While processing a source filemcc gives information on its progress.
Switching this option on disables the generation of this progress reporting
output, including the reporting of errors to standard output.

EXAMPLE

mcc prog -Q+

Range Switch on pointer range checking

SYNOPSIS

RAnge±

DESCRIPTION

Pointer range checking is performed bymceand can be done in one of two
ways: by using real pointers, or by extending the pointer data type. The first
is slower but included checks for uninitialized data and can be used with
host compiled routines. The latter requires extra information to be added to
the .kic file generated bymcc. This information is not added by default
because it would slow down the execution of programs that did not require
this checking. The type of pointer checking that is used is determined when
mce is compiled.

Note. In order to store the extra information needed to perform pointer range
checking this option increases the size of pointers to objects from 4 to 12
bytes.

EXAMPLE

mcc prog -R+

© 1992-1997 Knowledge Software Ltd Page 55

References Give standard reference on error messages

SYNOPSIS

REFerences±

DESCRIPTION

The messages reported bymcc are intended to be informative and easily
understood. As such they do not necessarily use the terminology of the
standard. Switching this option on causes the message reporting machinery
to give a reference to the standard (provided one is present in the error file
that contains the appropriate error number) with the text of the message.

EXAMPLE

mcc prog -REF+

Remark Comment option

SYNOPSIS

REMark <text>

DESCRIPTION

The text following this option in an option file (not the command line) is
treated as a comment. It has no effect on the behaviour ofmcc.

If used as an option on the command line a warning will be given.

EXAMPLE

-REM Profile for BSD extensions to System V

Return Name of identifier causing abnormal termination

SYNOPSIS

RETurn <identifier>

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 56

The identifier following this option is the name of a function which, when
executed, causes the current function to return (it may also cause other,
outstanding, function invocations to be terminated, or even the entire pro-
gram to terminate).

Calling functions that do not return to their point of call alters the flow of
control. mcc uses this information to perform a more accurate analysis of
the source code.

EXAMPLE

-RET exit

PROFILE

This option is set by various standards profile.

SCANFspec Specify legal conversion specifiers

SYNOPSIS

SCANFset string

DESCRIPTION

This option is used to tellmccwhich conversion specifiers may occur in the
format string passed to calls toscanf.

EXAMPLE

mcc prog -SCANFset “WTE”

PROFILE

This option is set by the compiler profile.

Shend Execute string prior to termination

SYNOPSIS

SHEnd <string>

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 57

Just beforemccreturns to the host command line the specified string is used
as the parameter to a call to thesystemfunction. Note: this call is protected
by a call tosetgid.

EXAMPLE

mcc prog -SHE !ls -l *.kic!

Shstart Execute string before compilation

SYNOPSIS

SHStart <string>

DESCRIPTION

Just beforemcc starts to check the program source, the specified string is
used as the parameter to a call to thesystemfunction. Note: This call is
protected by a call tosetgid.

EXAMPLE

mcc prog -SHS !date!

Size Specify type size in bits

SYNOPSIS

Size <type>=<bits>

DESCRIPTION

This option specifies the size in bits for an object declared to have the given
scalar type.

<type> is one ofchar, short, int, long, float, double, ldouble, dataptr or
codeptr.

The C standard imposes minimum limits on the range of values that integral
types may take. Specifying a size smaller than that required to hold this
range of values may result in a non-conforming program.

Interaction with alignment. Changing the size of scalar objects may affect
the addressing of these objects through an interaction with the-Align-
ment option settings.

© 1992-1997 Knowledge Software Ltd Page 58

Interaction withmce. Mce will probably have been built to accept scalars
of a given size. An error may result through incompatible sizes of scalars
in mccandmce.

EXAMPLE

mcc prog -S int=24

PROFILE

This option is set by the compiler profile.

Source Select source platform

SYNOPSIS

SOurce <platform>

DESCRIPTION

Specify the platform on which the program is known to compile and execute
correctly. The information on the source platform is used in conjunction
with the target platform to give more specific information on likely porting
problems.

If no source platform is given theunknown profile is used.

EXAMPLE

mcc prog -SOurce 88k

SQL Enable embedded SQL

SYNOPSIS

SQL <sql_level>

DESCRIPTION

Specify that the source contains embedded SQL. The SQL/2 standard
(ISO/IEC 9075:1992(E)) permits various levels of conformance.OSPCcan
be made to flag the use of constructs outside of a specific level by specifying
one of:

ENTry_sql Check for entry level SQL

© 1992-1997 Knowledge Software Ltd Page 59

INTermediate_sql Check for intermediate level SQL

SQL_2 Check against full SQL/3

SQL_3 Check against the emerging SQL/3 draft standard

EXAMPLE

mcc prog -SQL SQL_2

SQLVendor Specify SQL vendor

SYNOPSIS

SQL <sql_vendor>

DESCRIPTION

Most vendors of SQL products have added their own extensions. This option
can be used to tellOSPC which vendors dialect of SQL to expect. Valid
SQL vendors include:

ORACLE6 Oracle version 6

ORACLE7 Oracle version 7

INGRes Ingres

INFOrmix Informix

SYBAse Sybase

UNKNown Vendor is unknown

To obtain an up todate list of those vendors supported in the current release use the-DET
option, or read the latestman page.

EXAMPLE

mcc prog -SQL SQL_2 -SQLV ORACLE6

Srcprof Select additional source profiles

SYNOPSIS

© 1992-1997 Knowledge Software Ltd Page 60

SRCProf <profile>

DESCRIPTION

This option allows other standards to be specified in addition to those already
supported through specifying a platform profile.

EXAMPLE

mcc prog -SRC sun4 -SRCProf Xwindows

This specifies the source platform as a sun4 that is using X-windows. This
options removes the need to specify a platform profile for every possible
system combination (e.g., sun4 under SunOS, X-windows, Motif, etc).

Standard Adhere rigidly to the ISO C standard

SYNOPSIS

STandard±

DESCRIPTION

This option does not causemccto perform any more checks. Rather it causes
the messaging system to use the highest level of message available. The
default behaviour is to attempt to recover from errors and use the lowest
level message possible. When this option is switched on recovery still
occurs, but the highest level message possible, is given. It also disables the
use of extensions.

EXAMPLE

mcc prog -ST+

StackdescendGenerate code that uses a descending parameter stack

SYNOPSIS

STACKDescend±

DESCRIPTION

This option affects the way thatmcc views the memory model used by the
dynamic checker. Some cpus have a system stack that grows from low

© 1992-1997 Knowledge Software Ltd Page 61

memory to high memory. Other do the reverse. This option allows either
type of behaviour to be mimicked.

EXAMPLE

mcc prog -STACKD+

Stdhdr Use standard headers before system headers

SYNOPSIS

STDHdr±

DESCRIPTION

OSPC is shipped with a directory containing header files matching the
specified contents of a variety of standards. When this option is enabled this
directory is searched for a system header. Otherwise any host directories are
searched.

Toggling this option on and off allows the user to select between the use of
host supplied headers, which may not be fully conforming, and standards
conforming headers. Without the need to reorganize the sequence of-I
options.

EXAMPLE

mcc prog -STDHdr+

Str uct Specify structure or union member checking filename

SYNOPSIS

STRuct <filename>

DESCRIPTION

The named file contains the names of members that are required to be in
structanduniontypes declared (either trough the use of tags ortypedefs) in
system headers. Multiple-STRUCToptions can be given. If new members
are specified for structures or unions declared in previous struct files the
definitions are merged.

Using members of types not defined by standards constitutes implementa-
tion defined behaviour.

© 1992-1997 Knowledge Software Ltd Page 62

EXAMPLE

mcc prog -STRUCT PROFILES/standard/ansic/struct

PROFILE

This option is set by the standards profile.

Summary Give a summary of messages given

SYNOPSIS

SUMmary <display-method>

DESCRIPTION

The summary is generated after all of the source has been processed. The
output is sent to the same places as the messages it is summarizing. It is
possible to break down the summary by where the warnings occur. It is also
possible to obtain an additional summary of the suppressed warnings.

BYFIle
Generate a summary for each file encountered.

TOTAls
Generate one summary for all of the warnings generated.

CFILes
Only generate a summary for warnings given in files ending in.c

SUPPressed
Include a summary of warnings that did not appear because they had
been suppressed.

EXAMPLE

mcc prog -SUMmary BYFIle -SUMmary SUPPressed

Suppresslvl Suppress messages below given level

SYNOPSIS

SUppresslvl <number>

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 63

The error message file associates one or more numeric levels with each error
number it contains. The number given in this option acts as a cutoff.
Messages with levels below this value are not given.

Thus if the highest level specified for a given message level is 5 and the
cutoff is 6 no messages will ever appear for that error number. If messages
at levels 5,6 and 7 are available for a given message and the cutoff is level
6 then the level 6 message acts as the minimum level available.

If this option occurs in the source platform information files then the
<number> is associated with source platform error numbers only.

EXAMPLE

mcc prog -SU6

Suwrap Are signed/unsigned conversions representable

SYNOPSIS

SUWrap±

DESCRIPTION

Assigning a signed quantity to an unsigned type of the same size may result
in undefined behaviour (if the value cannot be represented in the target type).
The same is also true of unsigned to unsigned conversions. The conversion
may be ok for several reasons, for instance the value is known to always be
in range or the integral representation is such that the desired result is
obtained.

This option is used to specify that conversions involving signed and un-
signed types of the same size are ok and should not be flagged.

EXAMPLE

mcc prog -SUWrap+

Tabwidth Set the number of spaces indented by the tab character

SYNOPSIS

TABwidth <number>

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 64

The tab character is treated the same as space character by C implementa-
tions. But one tab character is usually equivalent to more than one space
character when the source code is displayed. When checking the indentation
of statements it is necessary to know how many space characters appear
when a tab character is used. This option allows the user to specify this
value.

The default value is 8.

EXAMPLE

mcc prog -TABwidth 3 -lint+

Target Select target platform

SYNOPSIS

TArget <platform>

DESCRIPTION

Select the platform to which the software is being ported. The information
on the target platform is used in conjunction with the source platform
(provided via the-SOURCEoption) to give more specific information on
likely problems.

If a target is not specified theunknown platform is used.

EXAMPLE

mcc prog -TArget cabstract

Tgtprof Select additional target profile

SYNOPSIS

TGTProf <profile>

DESCRIPTION

This option is similar to-SRCProf except it applies to the target platform
rather than the source.

EXAMPLE

© 1992-1997 Knowledge Software Ltd Page 65

mcc prog -tgtp STREAMS

Trace Trace configuration files as they are read

SYNOPSIS

TRace <tag>

DESCRIPTION

This option specifies which of the following is to be traced, depending on
the tags given:

• config
The configuration file must follow a predefined format. Without any
feedback, errors in the layout of this file can be difficult to track
down. Using this option causes information on the configuration file
to be given, as it is being read in. Information from this trace can be
used to locate possible problems in the file layout.

• include
Switching this option on causes the#include preprocessor direc-
tive line to be output. The full path of the included file is given.

• input
Switching this option on causes lines read from the source file to be
displayed on standard output and sent to the log file (if open). The
displayed text corresponds to the line read before any preprocessing
is performed.

This option differs from the-LOG and-Listing options in that it
displays the input file as it is read. At this stage no processing has
taken place. So the contents match the text that would be seen using
an editor.

• memory
When processing very large source files it is possible to run out of
memory. Switching this option on causesmcc to display the amount
of memory remaining at various stages.

Note: This information is not available on some host platforms.

• options
Since the options are read from several files, each with a different

© 1992-1997 Knowledge Software Ltd Page 66

precedence, it can be hard to determine exactly where an option is
being set. Selecting this option will display each line of an option
file before it is interpreted.

• profiles
Similar to -TRACE options except that the options are only
displayed for the profiles that are read in (not the .rc and default files).

EXAMPLE

mcc prog -TRACE profiles

UnsignedcharPlain char to be unsigned

SYNOPSIS

Unsignedchar±

DESCRIPTION

The C standards allows a declaration that simply gives thechartype specifier
to be interpreted as being equivalent tounsigned charor signed char. The
decision is implementation defined.

Switching this option on causes plainchar to be treated as equivalent to
unsigned char.

EXAMPLE

mcc prog -Unsigned-

PROFILE

This option is set by the compiler profile.

V ia Specify control file to read further options from

SYNOPSIS

VIA <filename>

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 67

Via files are text files, created by the user, that contain a list of options. Via
files might be used to build a particular set of source files.

Options in a via file are given one per line. Avia file may contain a reference
to other via files (to an arbitrary depth). Each reference will be processed
as it is encountered, and when the end of the file is reached processing will
continue in the original file after the-Via option.

EXAMPLE

mcc prog -via proj.via

Xcasesig Case fold external names

SYNOPSIS

XCasesig±

DESCRIPTION

Switching this option on causes a warning to be reported if two identifiers
are the same except for their case, within their significant length. The
identifiers are still treated as denoting separate objects.

EXAMPLE

mcc prog -XCases+

PROFILE

This option is set by the compiler profile.

Xnamelength External name significance

SYNOPSIS

XNamelength <number>

XL <number>

DESCRIPTION

This option may be used to specify the number of significant characters in
an external identifier. A warning will be given if identifiers are not signifi-
cant after the given number of characters.

© 1992-1997 Knowledge Software Ltd Page 68

The C standard specifies that only the first six characters in an external
identifier need be considered significant.

EXAMPLE

mcc prog -xn 23

PROFILE

This option is set by the compiler profile.

© 1992-1997 Knowledge Software Ltd Page 69

Chapter 4

Platform profiles

4.1 Introduction

This chapter describes the use, composition, and creation of platform profiles. At the top
most level platform profiles provide a way of specifying all the attributes of a particular
platform. This top level profile is created by merging the information from one or more,
lower level subprofiles.

Not all developers are interested in 100% conformance to standards. Platform profiles offer
a method of reducing the number of ‘non interesting’, that is non target specific, warnings.

4.2 The profile hierarchy

The lower level subprofiles contain information about each component that goes into
making up a platform. These subprofiles include:

· processor used (cpu)

· application binary interface (abi)

· compiler (compiler)

· operating system (os)

· standards supported (e.g., ISO C, POSIX) (standards)

· platform specific information (misc)

Each of these subprofiles is a self contained entity (except perhaps for misc). One advantage
of breaking down platform in this fashion is that information can be reused. For instance
once a particular cpu profile has been created it can be reused as part of another platform
profile. The subprofiles form a hierarchy in that they are processed in a given order, so a
subsequent profile could override the settings of a previous profile. This topic is dealt with
more fully later.

© 1992-1996 Knowledge Software Ltd Page 69

4.3 Reducing the output

As already mentioned the main purpose of platform profiles is to reduce the quantity of
warnings generated by each tool. Rather than assuming the worst case (the unknown
platform),OSPC reports the problems specifically associated with porting software from
the named source platform to the named target. To this end it makes the assumption that
the software will run on the source platform without any errors or warnings being generated.

Given the source and target platform it is possible to filter out warnings about those
constructs that are unlikely to cause trouble on the target. Examples of warnings that may
be filtered out include:

· Warnings about K&R style usage if both platform use a K&R compiler, or both do
not.

· Possible memory alignment problems if both processors have the same alignment
restrictions.

· External identifiers that are significant to at least as many characters on the target
platform as the source platform.

· Use of identifiers reserved by standards.

4.4 How options obtain their values

With so many possible methods of setting the value of options, users might well become
lost in trying to figure out what is going on. The following explanation is designed to give
some background on the thinking behind the implementation. This is followed by a road
map of what the tools actually do.

OSPCwill probably be used by many developers targeting many different platforms using
different standards. Although they may be using different source and target platforms they
are all, probably, working on the same host. When checking software for portability three
platform need to be considered:

1 The source platform.

2 The target platform.

3 The host platform, that is the platform on which the checking is being performed.

The source and target platforms are relatively independent. But there is some interconnec-
tion between the host and target platforms.

© 1992-1996 Knowledge Software Ltd Page 70

EachOSPCcomponent tool obtains profile information from several sources. Thus it is
necessary to know the order in which the files containing the options are processed. The
subprofiles, local configuration file and command line options are processed in the follow-
ing order:

1 Host, source and target are assigned default-default values.

2 The command line is read, and immediate options are processed. These immediate
options include such things as the source and target platform profile.

3 The host configuration default file (PROG/hstopts) is read.

4 The.mccrc file is read from the home directory, and overrides host information.

5 The.mccrc file is read from the current directory, and overrides host information.

6 Source default file (PROG/srcopts) is read.

7 Target default file (PROG/tgtopts) is read.

8 Source platform profile is read.

9 Target platform profile read. Target platform profile options override current host
option settings.

10 Command line options are fully processed and override current settings of host
information.

4.4.1 Processing the component profiles

Platform profiles are composed of component profiles. Each of these subprofiles may give
values to any option. Thus the order in which these subprofiles are processed can affect the
final setting of the options. The component profiles are read in the order:

1 cpu

2 abi

3 standards

4 os

5 compiler

6 misc

© 1992-1996 Knowledge Software Ltd Page 71

This ordering is intended to reflect a natural order of precedence; compilers have ultimate
control over the code that is produced, and how it interfaces to the O/S etc. A compiler can
always generate code to overcome restrictions in the cpu and is not bound by the ABI or
any standards. An ABI can be more specific than a cpu definition and may choose to relax
hardware restrictions enforced by the cpu. For instance the Intel i860 ABI suggests that
compiles might like to support unaligned data accesses, even though extra code would be
needed to get around the hardware restrictions on such accesses. The O/S may choose not
to implement completely, the standards it purports to support.

In practice most options are best controlled from a single subprofile. But be warned; there
are some strange platforms out there.

4.5 Profile administration

TheOSPCincludes a toolprofadm that provides a simple method of performing various
operations on profiles (they can also be edited, by hand, but locating the relevant files can
be time consuming). These operations include creating, deleting, and copying profiles,
listing profiles and their contents, and determining which platforms use certain profiles.
The syntax of the command is:

profadm <option> <profile-type> [<profile-name> [<new-profile-name>]]

where:

<option>:= create|copy|delete|find|list|update

<profile-type>:= abi|compiler|cpu|misc|os|platform|standard

4.5.1 Profadm options

It is not possible to abbreviate the options toprofadm.

Create Create a component or platform profile

SYNOPSIS

create <profile-type> <profile-name>

DESCRIPTION

Platform profiles are usually created in two stages. First it is necessary to
decide the component profiles that will go to make up the platform profile.
It is then necessary to see which of the available component profiles can be

© 1992-1996 Knowledge Software Ltd Page 72

used in this new platform profile. If some components are not available they
will need to be created.

EXAMPLE

To create a new cpu profile called SPARC

profadm create cpu SPARC

An editor screen (usually vi) screen will appear, with an outline profile in
place. The profile consists of a series of options. The options should be
edited to match the new processor, and then saved. The default the editor
can be changed by setting the environment variableMCEDITOR.

Other component profiles can be created by executing a create command for
each of the types and names. It is not necessary to have a component profile
for each possible component, e.g., generally there will only be either a cpu
or an abi profile, but not both.

After all the component profiles have been selected and created the platform
profile can be created.

EXAMPLE

To create a platform profile for a cray1 use:

profadm create platform cray1

Copy Make a copy of an existing profile

SYNOPSIS

copy <profile-type> <profile-name> <new-profile-name>

DESCRIPTION

This option is used for copying all the components of a platform profile.

EXAMPLE

profadm copy cpu i860_h i860_l

This creates a new cpu profile called i860_l that has the same specification
as i860_h. This new profile (i860_l) can then be edited with the command:

© 1992-1996 Knowledge Software Ltd Page 73

profadm update cpu i860_l

to change those options that differ between the two profiles.

Delete remove an old profile

SYNOPSIS

delete <profile-type> <profile-name>

DESCRIPTION

This option deletes an old component or cpu profile. Confirmation is
requested before the delete occurs.

EXAMPLE

profadm delete cpu 8088

Find Find all platforms referring to a component

SYNOPSIS

find <profile-type> <profile-name>

DESCRIPTION

This option searches through the platform profiles, and reports the names of
any that reference the named component profile.

EXAMPLE

To discover which platforms reference the 8086:

profadm find cpu 8086

List Display profile contents, or list of profiles

SYNOPSIS

list <profile-type>

list <profile-type> <profile-name>

© 1992-1996 Knowledge Software Ltd Page 74

DESCRIPTION

This command has two forms. If only <profile-type> is given all the possible
names are listed out for that profile. If the profile name is given, then the
contents of that profile is displayed.

EXAMPLE

To display all the platforms:

profadm list platform

or the operating systems:

profadm list os

To list the profile for the C standard use

profadm list standard ansic

Update Edit an existing profile

SYNOPSIS

update <profile-type> <profile-name>

DESCRIPTION

The editor will be invoked on each of the file(s) that can make up the profile.

• Enter the new component name

• Leave the component as it is by entering<return> on its own.

• Delete the component entry by enteringdelete

After the components have been set given the option to edit the misc file (or
create or delete it) is provided. The general philosophy behind the platforms
is to make them as reusable as possible.

EXAMPLE

To implement an OS for system V with BSD extensions, three profiles should
be created: SVR4 (the basic System V definition), BSD_ext (the BSD

© 1992-1996 Knowledge Software Ltd Page 75

extensions), and SVR4_BSD (both combined). SVR4_BSD consists of an
options file with the following entries

-via PROFILE/os/SVR4/options

-via PROFILE/os/BSD_ext/options

This enables the base files (SVR4 and BSD_ext) to be used in other
combinations.

4.6 Contents of profile files

Profile files take several forms:

· References to other files that contain the actual information (using the-Via option).

· A list of options, for instance sizes of datatypes.

· Standards information, for instance a list of reserved identifiers.

Because of their bulk it is worthwhile compressing some standards files into a binary form.
This has the advantage of speeding up the reading of that information when the tool starts
up. Information on the C and POSIX standards is shipped out in binary form (the C standard
has nearly 1,000 reserved identifiers), as are thePROFILE/misc files (average of 22,000
identifiers per platform).

The layout of those files containing standards information is described earlier in this manual.

4.7 Restrictions

Filenames are not allowed in platform profiles. It is unlikely that a given source file needs
to be processed on every invocation ofOSPC, so such a request is likely to be the result of
a bug in the profile information.

4.8 Directory structure

The information about the profiles is stored in theprofile directory withincheck-
info . Profiles of the same type are grouped within a subdirectory of the profile directory
(see the diagram below).

profile

platform

© 1992-1996 Knowledge Software Ltd Page 76

<name-of-platform>

cpu abi os compiler standard misc

cpu

<name-of-cpu>

options

abi

<name-of-abi>

options

os

<name-of-os>

options

compiler

<name-of-compiler>

options

standard

<name-of-standard>

options ident errors struct headers assign params conderr psid

The information for the component profiles is stored in an options file. Any other files that
are relevant to that component are also stored in the directory, e.g., a file for checking
identifier names. They are accessed by specifying an appropriate option in the option file,
e.g.,-CHECKId PROFILE/standard/ansic/ident .

Most of the information contained in the profiles supplied withOSPChas been preproc-
essed into a binary file. This reduces the time required to read in the data, but means that
the files cannot be modified by the user.

© 1992-1996 Knowledge Software Ltd Page 77

4.9 Creating new platform profiles

4.9.1 Obtaining the information

As a first approximation the general sales literature is a good place to start. This will
probable tell you the cpu being used and the derivation of the O/S. It may even make some
claims with regard to supporting various standards. It should be remembered that these
claims are being made in sales literature. The next place to look is the C compiler
documentation. If the compiler has been formally validated ask to see the documentation
relating to the handling of implementation defined behaviours.

Included as part of theOSPCdistribution is a directory calleddeduce . In this directory
is a collection of programs and scripts intended to elicit characteristics of the host compiler.
Their output, where possible, takes the form ofOSPCcommand line options.

Unix comes with a lot of documentation. The manuals of interest will probably have the
word programmer in it somewhere. Manuals with this word in their title tend to contain
technical information.

4.9.2 What goes where

Within each subprofile subdirectory is a template file. This contains commented out settings
for all options that we believe should be associated with that subprofile. Some options do
have a single and obvious place where they belong. While other options could be, and
sometimes are, given in several subprofiles.

As mentioned earlier the subprofiles are processed in a well defined order. If it is decided
that options should be placed in different subprofiles, care should be taken that there is no
interaction with existing platform profiles.

The directorycompany is where company specific profiles should be placed.

4.9.3 Checking it works

The first thing to do is to obtain a detailed help listing using the new platform profile as the
target. This should cause the predicted default values to be given for the appropriate options.

© 1992-1996 Knowledge Software Ltd Page 78

Chapter 5

Creating Standards profiles

5.1 Introduction

Given a standards document this chapter describes how to go about creating a profile for
the requirements it contains.

OSPC has been designed with a particular set of requirements in mind; those needed to
check conformance to the ISO C and POSIX standards. Thus it assumes a particular view
of the world. Bindings to new standards are likely to have a similar view. After all they
will be providing an interface to software written in the same language.

If your standards document contains a conformance requirement that cannot be detected by
OSPC please give Knowledge Software a call. We are always happy to discuss adding
additional checks to the tool set.

5.2 When can the construct be detected?

The best time to flag any violation of a standards requirement is statically on the source
code. For technical reasons this is not always possible. An application may rely on input
received at runtime. Thus without knowing the possible input values it is not possible to
checks all conformance issues statically.

Those constructs that are flagged when unit of code are linked together tend not to vary
across standard bindings. In most cases the rules for cross unit checking given in the ISO
C standard are used.

Runtime checks invariably involve the interface between the application program and the
system services. The C language checks that the dynamic portion ofOSPCperforms have
been built into the runtime checker. Aset of interface checking routines have been provided
for POSIX.1 and there is a mechanism for users to add their own interface checks.

5.3 Language

Bindings to standards rarely involve themselves in specifying implementation (at least for
C, the POSIX.1 standard does suggest that language bindings might be done via language
extensions and sites Fortran as a possible candidate). It is possible that an implementation
of a particular binding might rely on language extensions. In this case the development

© 1992-1996 Knowledge Software Ltd Page 79

compiler would have to support such extensions and these would be enabled under the
compiler subprofile.

Bindings are more likely to suggest restrictions rather than extensions. These might include
the number of significant characters in an identifier and the case significance of external
identifiers.

C language bindings invariably place declarations in header files. The names of these header
files is specified, but their full pathname will depend on implementations. The characters
that may occur in a pathname will depend on the host and will form part of the OS subprofile.

5.4 Service interface

5.4.1 Introduction

Before starting to create a new standards profile it is very important to read the appropriate
document from beginning to end. The writers of standards do not always make the job of
the person interested in conformance job easy (standards are usually written from the
perspective of implementors). The most important part of the document to study are the
conformance statements. These will often apply to implementations as well as applications
using the services provided.

5.4.2 Identifiers

Names of functions, typedefs and objects are at the heart of any service interface. At the
simplest level the name of an identifier may clash with an identifier already defined in the
users application. So the a list of names defined for use by a given binding is needed.
Bindings may also specify names beginning or ending in a given sequence of characters as
being reserved for future use.

A binding may specify a convention that should be followed in naming identifiers in its
interface, X11 identifiers start with X. It is possible for identifiers reserved by one standard
to be used in another. For instance the C standard reserves all identifiers that begin with an
upper case letter. This clashes with the X11 convention of starting external names with a
capital X. The exceptions list provides a mechanism of reducing cross standards interfer-
ence.

Standards that provide optional services often specify macro names to be used to test for
the availability of these options (feature test macros). The names of these feature test macros
become reserved, because of this usage.

Implementations sometimes also use predefined macro names. Vendors that ship software
on a variety of platforms often choose to ship identical header files. The appropriate header
contents being selected via conditional compilation, based on the definition, or non-defini-
tion, of macros. The use of these predefined macros is ‘known’ to the compiler and this
information is best placed in the compiler subprofile.

© 1992-1996 Knowledge Software Ltd Page 80

5.4.3 Header files

Within OSPCthe list of header names serves two purposes. Firstly usage of system headers
not on the list can be flagged and secondly use of a system header on the list can be used
as a method of suggesting the use of extra standard subprofiles.

Standards rarely specify the full path of headers. They either simply give the header file
name and leave the location of this file up to the implementation, or they specify relative
paths (in POSIX header files are assumed to exist in a system directory that may contain
additional directories, iesys). A standards subprofile should not give full pathnames. It is
best to simply give the filename specified in the standard. If an implementation requires a
pathname the-I option tomccoption should be used.

Again standards rarely use character outside of the ISO 646 character set. If they do the
-IDchars option needs to be used to ensure that the additional characters are not flagged.

5.4.4 Restrictions on use of macro names

Macro names are sometimes more than constant expressions. A standard will usually
specify whether a particular macro has to be implemented as a constant expression. Even
though there may not be a requirement for a macro to be implemented as a constant
expression implementations are free to do so. Relying on such behaviour is non portable
and falls outside the bounds defined by the standard requirements.

5.4.5 Arguments in function calls

Calls to some services often required symbolic arguments. The reason for using symbolic
arguments is that it allows particular implementations to use different values. The use of
these symbolic constants may have to be tempered because of existing practice, ie the use
of octal numbers instead ofmode_tconstants in calls toopen.

5.5 Accredited standards

The POSIX and C standards define two types of conformance, 1) implementation confor-
mance and 2) application (or source code) conformance. In this manual we are interested
in the latter. Application conformance is broken down into various categories. The classi-
fication of these categories varies slightly between the two standards.

Other standards are not always as rigorous in specifying conformance requirements.
Sometimes they may only specify implementation conformance, and sometimes they may
not contain any conformance requirements at all.

© 1992-1996 Knowledge Software Ltd Page 81

5.6 Manufacturers standards

Most vendors do not simply implement the requirements of a standard. Many will add
extensions and, depending on the age of the standard, some will only partially implement
other features. Claims of conformance to standards should be taken with a pinch of salt,
unless backed up by a formal validation certificate. Having read the standards document
from cover to cover the various minor mentions of ‘differences’ in behaviour between the
implementation and the published standard will have been located. The names of the
functions that exhibit different behaviour should be noted.

5.6.1 Industry standards

The main problem with industry standards is that they are often not written down. This
makes locating the conformance requirements difficult. If English documentation is not
available another source of information is test suites and publicly available applications
software (comments can be very revealing). Failing the availability of these sources the
profile written has to fall back onto ‘know-how’.

5.6.2 Derived or superset standards

Accredited standards documents often form the basis of manufacturer or industry standards.
For instance many vendors supply implementations of the graphics standard GKS. These
implementations often contain extensions and differences in behaviour from GKS, the base
standard. In other cases the supplier of one ‘industry standard’might claim conformance to
an accredited standard, ie SVR4 compliance to POSIX.1.

The way to handle such derived, or superset standards is to create standards profile datafiles
that contains the differences and additional behaviour. The subprofile for that standard then
references the standards from which it is derived and the additional information specific to
its own requirements (done using the-Via option in the subprofiles).

5.7 Interaction between standards

Standards may interact in ways known to the creators of the documents and ways unknown
to them. When creating a base standard committees will often provide mechanisms for
other standards to interface to the services provided. Providing the appropriate mechanisms
for future use involves a certain amount of guess work. It also involves good will on the
part of the committee using the interface. Sometimes the interface mechanisms are too strict
and at other times to relaxed.

Many standards reserve identifiers for future use.OSPChas a mechanism for handling this
process and it is described above.

Sometimes standards converge to a common base. The migration of SVID towards POSIX
compliance is a good example. In these cases existing practice often has to be maintained

© 1992-1996 Knowledge Software Ltd Page 82

where possible. It is common for some system services to exhibit slightly different
behaviour (but still being sufficiently compatible to pass a validation test). Different return
types.

5.8 The error file

Each standard profile may have an error file associated with it. This file will contain error
numbers and their respective messages. References to the appropriate standard may also
appear in this file (see chapter 2 for details on the layout of this file).

If an error number cannot be found in any of the available error filesmccwill simply display
that number.

If an unexpected message is given check that the error numbers being used do not overlap
with existing numbers. The error files are read in an unpredictable order. So if error
numbers are not unique it is not possible to predict which message will appear.

5.9 Checking new profiles

As the information for a new profile is being gathered test cases should be written. These
test cases should causeOSPC to both flag and not flag constructs (positive and negative
testing). Test cases are not only used to show that the profile has been correctly specified
but also help to crystallise thinking. Seeing constructs being flagged in a ‘real life’ context
can be very helpful in understanding how developers will see the results.

In some cases there may be errors in the format of the options. A warning to this effect will
be displayed when that profile is read bymcc.

The -Det option can also be used to view the settings of options. Note that most of the
values displayed refer to the target platform. Remember that profiles are read in a given
order. The-Trace profile option can be used to give a trace of the profiles, as they
are being read in.

© 1992-1996 Knowledge Software Ltd Page 83

© 1992-1996 Knowledge Software Ltd Page 84

Chapter 6

The API identifier database

This chapter covers the identifier database used byOSPC. In particular the format of files
read by theiddb utility.

The filename given in a-CHK option must have been generated by theiddb utility. iddb
takes the information in one of more text files and creates a binary file containing that
information, but which can be searched quickly.

The format of the input files is very simple. It consists of a title line followed by information
lines, optionally interspersed with comment lines. Title lines start with a# character in the
first column. As with the other files, blank lines are ignored, and lines starting with a star,
* , are treated as comments.

Possible section title lines include:

1 #api

2 #assigns

3 #define

4 #duplicate services

5 #end

6 #errors

7 #exception

8 #feature test

9 #header

10 #literal

11 #not always const

12 #param

13 #path

© 1994-1997 Knowledge Software Ltd Page 85

14 #protect

15 #reserved

16 #sets

17 #status flags

18 #symbolic constants

Information onstruct ’s is held in a text file and does not form part of a binary database
file. These files are input toOSPCusing the-STRUCToption.

6.1 #api

This directive is followed by an identifier that names the API which this file is associated
with.

#api posix_1

This is the API name is written out to the.api file when the-API option is switched on.
All of the input files given on the command line toiddb must have the same API name.

6.2 #assigns

This section title introduces a list of identifiers. Information on which integer literal
constants, or symbolic names, may be compared with and assigned to these identifiers
occurs after each identifier.

The format of each line is:

<name> ‘=’ <modifiers>

Where<name> is an API scalar object identifier. Functions may be specified by following
the name with round brackets,(). Members of structures or unions may be specified using
dot select notation.

<modifiers> is a list of the one or more of the following:

· <number> a valid particular number.

· +ve the routine may return any positive number.

· -ve the routine may return any negative number.

© 1994-1997 Knowledge Software Ltd Page 86

· any the routine may return a positive or negative number. If given on their own it
means the numbers may be returned, but their values hold no significance.

· {+ve} {-ve} {any} if enclosed in brackets it means the numeric values have
significance and may be compared against any number in that range.

· {<number>,<number>} a range of numeric values that the routine may return.

· <identifier> a symbolic name.

*
* POSIX_1/assign Lastmod 1 Aug 92 DJ
* Created 4 Jul 92 DJ
*
**

#assigns

errn o = 0 E2BIG EACCES EAGAIN EBADF EBUSY ECHILD EDEADLK EDOM
= EEXIST EFAULT EFBIG EINTR EINVAL EIO EISDIR EMFILE EMLINK
= ENAMETOOLONG ENFILE ENODEV ENOENT ENOEXEC ENOLCK ENOMEM
= ENOSPC ENOSYS ENOTDIR ENOTEMPTY ENOTTY ENXIO EPERM EPIPE
= ERANGE EROFS ERRRNO ESPIPE ESRCH EXDEV

exec() = -1
wait() = -1 0 positive
sigismember() = -1 0 1
alarm() = 0 {positive}
pause() = -1
getgroups() = -1 {0, 32767}
getpgrp() = {positive}
sysconf() = -1 {positive}
chdir() = -1 0
creat() = -1 positive
fcntl() = -1 {any}
cfgetospeed() = B0 B50 B75 B110 B134 B150 B200 B300 B600 B1200

= B1800 B2400 B4800 B9600 B19200 B38400
cfsetospeed() = -1 0
cfgetispeed() = B0 B50 B75 B110 B134 B150 B200 B300 B600 B1200

= B1800 B2400 B4800 B9600 B19200 B38400
fileno() = -1 STDIN_FILENO STDOUT_FILENO

= STDERR_FILENO positive

stat.st_mode = S_IRWXU | S_IRWXG | S_IRWXO | S_ISUID | S_ISGID

flock.l_type = F_RDLCK F_WRLCK F_UNLCK
flock.l_whence = SEEK_SET SEEK_CUR SEEK_END

termios.c_iflag = BRKINT | ICRNL | IGNBRK | IGNCR | IGNPAR |
= INLCR | INPCK | ISTRIP | IXOFF | IXON | PARMRK

termios.c_oflag = OPOST
termios.c_cflag = CLOCAL | CREAD | CSIZE | CS5 | CS6 | CS7 |

= CS8 | CSTOPB | HUPCL | PARENB | PARODD
termios.c_lflag = ECHO | ECHOE | ECHOK | ECHONL | ICANON |

= IEXTEN | ISIG | NOFLSH | TOSTOP

#end

© 1994-1997 Knowledge Software Ltd Page 87

6.3 #duplicate services

This section title is used to specify a list of API’s that offer similar services (using an identical
named external identifier). This can happen because of newer API’s building on existing
API’s by adding additional functionality. For instance POSIX extends the definition of
some of the services found in the ISO C standard.

By listing API’s that offer duplicate services it is possible to reduce the number of false
warnings concerning use of these services.

#duplicate services

ISO_C
POSIX_1

#end

6.4 #end

This section title is used to indicate the end of useful information within a text file. Files
need not end in a#end , end of file also signals the end of useful information.

6.5 #error

This section title is used to change the error message associated with a reserved identifier
after it has been#undef’d.

<initial-error> ‘->’ [<final-error>]

Both<initial-error> and<final-error> must occur in the list of#define’s that
occurred earlier in the file.

#errors

* A reserved macro cannot be undefed and then re-#defined
ps_res_macro -> ps_no_def_macro

* Neither can a macro which might cover a function
ps_macro_id -> ps_no_def_macro

6.6 #exception

If a matching reserved identifier is found, it is only reported if it doesn’t also have a matching
entry in the exception list. This section title allows exceptions to the reserved identifier list
to be specified. The format of each line is the same as that in the reserved section, except
no error number is given.

© 1994-1997 Knowledge Software Ltd Page 88

<regular-expression> [<specifier list>]

One use of this facility is to prevent the flagging of declarations that are reserved in one
standard, but used in another. For instance the use of names beginning with _X, in X11
clashes with the ISO C requirements.

#exception

_POSIX_SOURCE macro

#end

Note. Like identifiers in a#reserved section, identifiers in a#exception section
need to match in the specified context.

6.7 #feature test

This section specifies a list of possible feature test macro identifiers. It occurs before the
#protect section which uses those identifiers.

#feature test

_POSIX_JOB_CONTROL
_POSIX_SAVED_IDS

#end

6.8 #header

This section title associates header names with profile names.

<header name> <profile name list>

The database file generated byiddb, containing header information should be given to the
-HEADERoption.

#header

stdio.h ansic
stdlib.h ansic
string.h ansic
time.h ansic

#end

6.9 #literal

This section title marks the start of a list of integer literal constants. A context and usage
may be associated with each literal.

© 1994-1997 Knowledge Software Ltd Page 89

The format of each line is:

<context> [<usage_list>] <error_number> ‘=’ <modifiers>

where<context> may be one of:

1 any, a literal in any context.

2 ppif , a literal occuring in a#if expression.

3 init_expr , a literal occuring in the initialization expression of an objext definition.

4 stmt_expr, a literal occuring in a statement (excluding a controlling expression).

5 ctl_expr, a literal occuring in a control expression, ieif statement.

6 dcl_expr, a literal occuring in a declaration, ie array size, or bit-field width.

<usage_list> is an optional list of specifiers giving extra information on how the use
of literals should be matched. If this list is empty, all three uses may match. The optional
values are:

1 typed_lit, the literal appears in the source code, as typed in.

2 macro_lit, the literal does not visibly appear in the source code, but is used via a
macro substitution.

3 enum_lit, the literal does not visibly appear in the source code, but is used via an
enum literal substitution.

<error_number> is an error number or an identifier previously defined to represent such
a number.

<modifiers> are the literal values. They are represented using the same notation as that
specified for the field of the same name given above for#assign lines.

#literal

any 3000 = {10,20}
ctl_expr 3001 = +ve
stmt_expr typed_lit 3002 = -ve

#end

6.10 #not always constant

This section title marks the start of a list of macro names that need not be constant. It is
followed by a list of identifiers, one per line.

© 1994-1997 Knowledge Software Ltd Page 90

#not always const

CLK_TCK

#end

6.11 #param (symbolic parameters)

The information occurs in two main sections, the first defines the sets, and the second
specifies the parameter of a function that requires a particular combination of symbolic
arguments.

Note that this file does not contain any error numbers. A single error number is used,
internally. The names of the allowable symbolic arguments being created from the contents
of this file and merged into the error message.

The legal combinations of symbolic macros that may be passed in API calls is often complex.
OSPCuses a set notation to describe which symbols are legal in each context. It is probably
easier to get the guist of the format by looking at a few examples, and giving the full details
later:

Example 1.The third argument tolseek():

#sets

$lseek_args = { SEEK_END, SEEK_CUR, SEEK_SET }

#param

lseek param 3 in $lseek_args

This simple example could also have been specified with the entry:

#param
lseek param 3 in { SEEK_END, SEEK_CUR, SEEK_SET }

#end

The convention is for set names to begin with a dollar,$, character, so that they are clearly
differentiable from real identifier names.

Example 2. The second parameter toaccess():

#sets

$access_args = { F_OK } or { X_OK, R_OK, W_OK } +

#parameters
access param 2 in $access_args

#end

© 1994-1997 Knowledge Software Ltd Page 91

Here, the legal values which can be passed toaccess()are eitherF_OK, or one or more of
{ X_OK, R_OK, W_OK} bitwise exclusive or’d together.

Example 3.The second parameter toopen():

#sets

$rw_type = { O_RDONLY, O_WRONLY, O_RDWR }
$oflags = { O_APPEND, O_CREATE, O_EXCL, ONOCTTY,

O_NONBLOCK, O_TRUNC } *
#parameters

open param 2 in $rw_type and $oflags

#end

Here the second parameter must have one of the constants in the$rw_type set, and this
may be inclusive OR’d with zero or more of the constants defined in$oflags .

6.11.1 #sets

Each line has the format:

<set-name> ‘=’ <set-specifier>

where:

<set-specifier> ::= <simple-set> |
<simple-set> <set-op> <simple-set>

<simple-set> ::= <set-name> | <simple-defn>

<simple-defn> ::= ‘0’ |
‘{‘ <set-list> ‘}’ <set-modifier> opt

<set-list> ::= <macro-name> |
<set-list> ‘,’ <macro-name>

<set-op> ::= ‘and’ | ‘or’

<set-modifier> ::= ‘*’ | ‘+’ | ‘?’

Note that this grammar only supports one level of operand. Complicated expressions can
be built up by defining and joining together many<set-specifiers> .

The <set-modifier> s use the same convention asgrep to indicate how many
<macro-name> s from a set can occur. No modifier implies one, ‘* ’means zero or more,
‘+’ - one or more, and ‘?’ means zero or one. The ‘0’ is a useful way of indicating that a
complicated set of names are optional, or for re-using a set definition:

$raise_args = 0 or $signal_names

© 1994-1997 Knowledge Software Ltd Page 92

6.11.2 #param

Each line has the format:

<function-name> ‘param’ <number> ‘in’ <set-specifier>

When a call to<function-name> occurs in the source code, argument<number> is
checked against the set of allowable values for that parameter.

6.12 #path

One difference associated with matching the contents of strings verses matching identifiers
is that the latter requires an complete match. That is to say it is not possible to match on
the first few characters or the last few characters, ignoring the rest of the characters. In the
case of checking string literals it is very likely that the required pattern will be surrounded
by other characters. For this reason matching against string literals is based on the longest
possible match.

Given the set of patterns:

*
#define e_ref_usr_bin 1234
#define e_ref_vi_ed 1235
#define e_ref_vital_file 1236
#define e_music_to_my_ears 1237
*
#path

/usr/bin e_ref_usr_bin
/usr/bin/vi e_ref_vi_ed
/usr/bin/vital e_ref_vital_file
/etc/b[io]ng e_music_to_my_ears

#end

The string“/usr/bin was here”will only match against the first pattern. The string literal
“The editor is in /usr/bin/vi” will match against the first two patterns, but the second is
longer; so its error number will be given. The literal“The file /usr/bin/vital must not be
lost” will match on the first three patterns, with the third being the longest match.

It is possible to specify regular expressions. For details see the#reserved section.

6.13 #protect

The#protect section takes the same form as the#reserved section. The file is split
into three parts:

1 #define lines. Give mnemonics to error numbers.

© 1994-1997 Knowledge Software Ltd Page 93

2 #feature testsection. List of feature test macros.

3 #protect section. List of ‘protected’ identifiers.

The #define lines have exactly the same format as those that occur in a#reserved
section.

Lines in a#protect section specify identifiers whose use should be protected with a
feature test macro. They have a format similar to lines in a#reserved section.

<ftm-name> <ident-name> <error-mnemonic> [<specifiers>]

The <ftm-name> should be the name of a feature test macro listed in a previous
#feature test section.

The rest of the line has the same format as a line in a#reserved section, with the following
exceptions:

· <ident-name> cannot be a regular expression.

· The specifiersdefine anddeclare are not allowed (since we are dealing with
the point of usage).

· The macro specifier is used to check for the use of a macro, and the other
‘pseudo-namespace’ specifiers have no meaning.

*
* POSIX1/ftms Lastmod 11 Aug 92 DJ
* Created 27 Mar 92 GH
*
**
* Same format as an ident file - in fact it is an ident file!
*

#define ps_need_protection 1420 Needs to be protected
#define ps_protect_action 1421 Action changes ...

#feature test

_POSIX_JOB_CONTROL
_POSIX_SAVED_IDS

* Table B-1 (in language specific definition)

_V7
_BSD
_BSD4_2
_BSD4_3
_SYSIII
_SYSV
_SYSV3
_SYSV4
_XPG1
_USR_GROUP

*

© 1994-1997 Knowledge Software Ltd Page 94

* These identifiers need to be protected by themselves since they
* might not always be defined.
*
ARG_MAX
CHILD_MAX
LINK_MAX
MAX_CANON
MAX_INPUT
NAME_MAX
OPEN_MAX
PATH_MAX
PIPE_BUF
STREAM_MAX

#protect
*
* Protecting ftm Name Error specification
* P1003.1 3.2.1.2
_POSIX_JOB_CONTROL WUNTRACED ps_need_protection macro
_POSIX_JOB_CONTROL WIFSTOPPED ps_need_protection macro
* P1003.1 3.3.1.1
_POSIX_JOB_CONTROL SIGCHLD ps_need_protection macro
_POSIX_JOB_CONTROL SIGCONT ps_need_protection macro
_POSIX_SAVED_IDS setuid ps_protect_action external identifier

#end

6.14 #reserved

This section title introduces a list of reserved identifier names. A context may be associated
with each identifier.

The information within a#reserved section is split into three sections:

1 #define. Optionally specified mnemonics for error numbers.

2 #errors. Specifies the new error number, to be used if a symbol is#undef ’d (in
the applications source code).

3 #reserved. List of reserved identifiers, along with the context in which they are
reserved.

6.14.1 Error number mnemonics

The lines in this section take the form:

‘#define’ <error-mnemonic> <error-number> [<comment>]

This format is very similar to the#define ’s found in error files. The difference is that in
#reserved sections they are used to associate a mnemonic with an error number, rather
than with an error level.

© 1994-1997 Knowledge Software Ltd Page 95

6.14.2 Reserved identifiers (#reserved)

These lines contain the bulk of the information about reserved identifiers. Each entry gives
the name of the identifier, its name space, scope, any headers that must be included, and the
error number to be reported if all these contexts match. Lines have the format:

<regular-expression> <error-mnemonic> [<specifier list>]

The regular expressions may consist entirely of ordinary characters (e.g.,strcmp), or may
contain special characters (e.g.,E:a.*). Special characters recognised include:

x Any ordinary character matches that character.
\ Backslash quotes any character (e.g. \:, \\ or \[)
. Matches any single character
:A Matches any upper case character
:a Matches any lower case character
:d Matches any decimal digit
:n Matches any digit or lower case character
:N Matches any digit or upper case character
* An expression followed by an asterisk matches zero or more occurrences of

that expression: fo* matches f, fo, foo etc.
+ An expression followed by an asterisk matches one or more occurrences of

that expression: fo+ matches fo, foo, fooo etc.
[] A string enclosed in square brackets matches any character in

that string. If a circumflex (^) is the first character in the string, it causes
the expression to match any character that isn’t in the string. E.g., [xyz]
matches ’x’ and ’z’, whilst [^xyz] matches a, but not y. A range of characters
may be specified by separating two characters by a - (e.g., [a-z]).

The<error-mnemonic> must have been given in a previous#define line in the errors
section. The error number should also have a corresponding entry in an associated error
file.

The optional list of specifiers provide a method of narrowing down the context in which
the name is reserved. For instance they allow the name to be reserved as an identifier, but
not as a macro. The specifiers can occur in any order and cover the following identifier
attributes:

Namespace identifier , label , tag , macro , header , include , field ,
no_def_macro , res_macro or macro_ident .
As well as the namespaces defined by the C standard, there are also
pseudo namespaces which are used for handling#undef ’s correctly.
These pseudo namespaces are explained in detail in the section dealing
with #undef .

Linkage external , internal or none . See the C standard for details.

© 1994-1997 Knowledge Software Ltd Page 96

Scope file , block , function , or prototype scope.

Definition define , declare , default . A definition is a declaration that
also causes storage to be allocated. The specifierdefault only
applies to identifiers that are default declared,extern int ident().

Included header included header.h , included !header.h
If a header is specified, the entry only matches if the header has been
included. Prefixing the header name with a! causes a match to occur
if the given header hasn’t been included. The headers must have been
specified in a previous ‘valid header’ file. If a header name is omitted,
then no checks are made against the list of headers that have been
included.

Identifier usage function_id , object_id , or typedef_id . When anIden-
tifier namespace is given these specifiers may be used to narrow
down the matching of the sort of identifier being declared.

If a specifier for an attribute isn’t given, the entry matches against an identifier having any
of the options available for that attribute.

Any of the namespaces that indicate a reserved macro name (macro, res_macro or
macro_ident) also match against any of the other name spaces. This reflects the action
of a compiler, where, because macros are substituted first, an identifier in any namespace
will clash with a macro name.

The specifiersany , scope , namespace andlinkage may also be given in the specifier
list. They are ignored, but can help to make the file more readable. The use ofany simply
makes it explicit that a match may occur in any context, the default if attributes are omitted.

*
* POSIX1/ident Lastmod 27 Mar 93 DJ
* Created 3 Feb 92 DJ
*
**

* A macro which is marked as reserved
#define ps_res_macro 1400

*A macro reserved, but can be used for any use if undef’d first
#define ps_fut_macro 1401

* A reserved external identifier
#define ps_ident 1402

* A identifier reserved for future use
#define ps_fut_ident 1403

* An identifier which may be covered by a macro definition
#define ps_macro_id 1404

* An future reserved identifier which might be covered by a macro
#define ps_fut_macro_id 1405

* A reserved file scope identifier/tag (e.g. a typedef)

© 1994-1997 Knowledge Software Ltd Page 97

#define ps_file_scope 1406

* A reserved tag name for a structure
#define ps_tag_name 1407

* Cannot redefine this macro even after an #undef (used in the
* error transitions)
#define ps_no_def_macro 1408

* Reserved for any uses....
#define ps_any_use 1409

* This doesn’t have to be defined as a function
#define ps_maybe_not_id 1410

* This library function needs a type from the appropriate header
#define func_ref_hd 1415

#errors

* A reserved macro cannot be undefed and then re-#defined
ps_res_macro -> ps_no_def_macro

* Neither can a macro which might cover a function
ps_macro_id -> ps_no_def_macro

* P1003.1 Table 2-2 Says that POSIX.1 only reserves identifiers
* for future use in two ways:
* 1. As macros which can be undefined & then used freely
* 2. Reserving the symbols for all uses.

#reserved
*
* expression err_num specifiers
*
d_.* ps_any_use any included dirent.h
l_.* ps_any_use any included fcntl.h
F_.* ps_fut_macro macro included fcntl.h
S_.* ps_fut_macro macro included fcntl.h
gr_.* ps_any_use any included grp.h
.*_MAX ps_any_use any included limits.h
pw_.* ps_any_use any included pwd.h
sa_.* ps_any_use any included signal.h
SA_.* ps_fut_macro macro included signal.h
st_.* ps_any_use any included sys/stat.h
S_.* ps_fut_macro macro included sys/stat.h
tms_.* ps_any_use any included sys/times.h
c_.* ps_any_use any included termios.h
V.* ps_fut_macro macro included termios.h
B:d.* ps_fut_macro macro included termios.h
*
* LC_:A.* defined in the ansic ident file.
*
.*_t ps_any_use any

*
* dirent.h
*

dirent ps_tag_name file scope tag included dirent.h
DIR ps_file_scope file scope identifier included dirent.h

*
* We still need 3 cases even though the first and last seem to
* be sufficient, in order to cover the case
* #include <dirent.h>
* #undef opendir
* int opendir;
*

© 1994-1997 Knowledge Software Ltd Page 98

opendir ps_macro_id macro_ident included dirent.h
opendir ps_ident define external identifier
opendir func_ref_hd external identifier included !dirent.h

readdir ps_macro_id macro_ident included dirent.h
readdir ps_ident define external identifier
readdir func_ref_hd external identifier included !dirent.h

rewinddir ps_macro_id macro_ident included dirent.h
rewinddir ps_ident define external identifier
closedir ps_macro_id macro_ident included dirent.h
closedir ps_ident define external identifier

*
* errno.h
*

E2BIG ps_res_macro res_macro included errno.h
EACCES ps_res_macro res_macro included errno.h
EDEADLK ps_res_macro res_macro included errno.h
*EDOM - See ansic
EEXIST ps_res_macro res_macro included errno.h
EFAULT ps_res_macro res_macro included errno.h
EINVAL ps_res_macro res_macro included errno.h
*ERANGE - See ansic
EXDEV ps_res_macro res_macro included errno.h

*
* fcntl.h
*

flock ps_tag_name file scope tag included fcntl.h
*
* P1003.1 6.5.2.2
*
FD_CLOEXEC ps_res_macro res_macro included fcntl.h
F_DUPFD ps_res_macro res_macro included fcntl.h
F_GETFD ps_res_macro res_macro included fcntl.h

#end

6.15 #status flags

The format of lines in a#status flags section is very similar to that of the#assigns
section. They have one of the forms:

<function id>’()’ ‘sets’ <id> <modifiers>

or

<function id>’()’ ‘checks’ <id> <modifiers>

In the first case a call to<function id> sets<id> to one of the values given in
<modifiers> . In the second case a call to the function checks that the<id> has one of
the values given in<modifiers> .

*
* statechk Lastmod 10 Apr 96 DJ
* Created 23 Jul 92 GH
*

© 1994-1997 Knowledge Software Ltd Page 99

**

#status flags

call1() sets flag {1,3}
call2() sets flag 11 22

call3() sets flag3 {1,6}
call3() sets flag3_1 {4,5}
call3() sets flag3_2 {6,7}

call4() sets flag4 {99,100}
call5() checks flag4

call6() sets flag6 2

#end

6.16 Structure files

A struct file consists of a list of the names ofstruct , unions or typedef s, followed
by a list of the members that they contain. The indentation within the structure is determined
by the number of whitespace characters on the start of the line (either spaces or tabs).

Note: Structure files are not processed byiddb. The information is read in directly, bymcc,
from the text file.

To indicate a symbol is atypedef the modifier:typedef is appended to the name. The
default action is to assume the name represents astruct orunion . This can be explicitly
specified by appending:union or :struct .

Multiple struct files can be specified, and the definitions from all of the files will be merged.

Comment lines, as for other files, are indicated by starting a line with the star,* , character.

Example: The entry forstruct direntin the POSIX.1 structure file has the specification:

dirent:struct
d_name

and that for the XPG structure file contains:

dirent:struct
d_ino

Since XPG is a superset of POSIX its platform profile includes the standard profile
information for POSIX.1, so only the extra fields need be specified - the two definitions
will be merged. Thus under XPG bothd_nameandd_inoare valid member references for
objects of typestruct dirent.

Referencing the POSIX platform profile, rather than filling in all of the available fields in
the XPG struct file gives important information. It specifies how XPG differs from POSIX.

© 1994-1997 Knowledge Software Ltd Page 100

Example:

Thediv_t type defined in<stdlib.h> has the following entry in the ISO C structure file:

div_t:typedef
quot
rem

Note the indentation of the members, this must be one whitespace character. Here it is a tab
character, (not one tab position’s worth of whitespace).

The structures defined can be fully hierarchical - with members of structures containing
members of structures, containing and so on ad infinitum (actually 15 levels are supported).

Example:

The format of the structure file should reflect the way in which structures are defined. As
an example consider information that might be held about a person:

struct person_info {
char * name;
int age;
struct {

char * street;
char * town;
char * county;
char postcode[PostCodeLen];
char * country;

} address;
};

This might have a corresponding structure definition:

person_info:struct
name
age
address

street
town
county
postcode

So in:

struct person_info joe;

joe.address.town = “London”;
joe.address.country = “England”;

the use of country as a field of address will be flagged.

© 1994-1997 Knowledge Software Ltd Page 101

Chapter 7

Identifier checking

7.1 Introduction

The type of identifier checks carried out usually varies according to context; declaration or
use. Declarations may clash with identifiers declared by API’s. Referenced identifiers may
be platform specific or rely on properties that go beyond those specified by an API.

7.2 Declaration/definition checks

Both the ISO C and POSIX Standards reserve certain identifier names. These include the
names of functions and types that are already defined, and also those that may be added to
the libraries in the future. Using one of these reserved names may cause unforeseen
problems either when the program is ported to a new environment, or when the C compiler
(and its libraries) are upgraded. Problems can arise from several different sources:

· Name clashing of externals.
Although it is unlikely that a program will contain functions calledprintf() or
strcmp(), names such asstep, advance, compileor timezone(which are all defined
by XPG) are not so obvious and may slip through the net, possibly causing problems
when the program is ported.

· Differences in implementation.
setjmp()is a good example of this. The C standard does not specify whethersetjmp()
is implemented as a macro, or as a function call. On some systems a program that
does not include the file<setjmp.h> , but declares the functionsetjmp()instead,
may work fine (if it has been implemented as a function). However problems will
occur if this program is then moved to a system that implements it as a macro.

· Clashes with macros.
Both the C and POSIX standards specify that any of the library functions may be
implemented via a macro (a function must also be provided in these cases). This
means that inside a system header an implementation may have defined a macro for
each function the header declares.

#define strcmp __strcmp

One reason for this usage might be to generate inline code for the comparison. The
problem that this usage causes arises because macros are substituted before any
syntax analysis takes place. Thus if a member of a structure is called strcmp (or

© 1996-97 Knowledge Software Ltd Page 103

step, remembering the previous example) it would also be replaced by the macro
body.

OSPC checks the name of every identifier that is declared or defined, against a list of
reserved names for the target platform profile. These names may be reserved for all
occurrences, or for particular scopes, namespaces, whether a particular header has been
included etc. The names that are checked can be added to, enabling other standards to be
supported.

7.3 Checking algorithm

The following algorithm is used to check the declaration/definition of identifiers:

1 Does the identifier match any of the reserved identifiers whose regular-expressions
consist of ‘ordinary‘ characters? If so continue at step 4.

2 Does the identifier match a reserved identifier containing one or more wild cards?
If not, the identifier is not flagged.

3 Does the identifier match any of the reserved ‘ordinary’character names, regardless
of namespace etc? If so exit checking without flagging the identifier. This situation
occurs when an ‘ordinary’ character reserved name has been#undef ’ed, hence it
is not caught at step 1.

4 Does the identifier match any of the exception regular expressions (whether this
involves character only matching or wild cards is not relevant). If so exit checking
without flagging the identifier.

5 The identifier has matched and is not in the exceptions list, so issue an error number.

7.3.1 Action on #undef

The ISO C rules regarding the processing of an#undef can be quite involved. If a symbol
is only reserved as an identifier, or as a tag then a#undef has no effect on the entry.
However if the object is a macro the behaviour is rather more complicated. The following
pseudo namespaces deal with the various conditions:

macro This is the namespace that is used for a normal macro that is reserved
but can be used by the program after it has been#undef ’d. Some of
the macros defined by POSIX.1 (e.g those with prefixes ofS_, V) fall
into this category.

res_macro This corresponds to the C Standard idea of a reserved macro. If a
reserved macro of this type (e.g.offsetof()) is #undef ’ed it
should still not be defined within the program as a macro name. If a
macro of this type is#undef ’d the entry type is changed to

© 1996-97 Knowledge Software Ltd Page 104

no_def_macro . So that future attempts to#define the identifier
will be flagged.

no_def_macro Entries in the reserved list with this namespace indicate names of
macros that cannot be#define’d. These entries are normally created
after a identifier in the reserved list has been#undef ’d.

macro_ident The C and POSIX standards state that a library function may addition-
ally be implemented as a macro. Themacro_ident namespace
marks a identifier that is reserved as a potentially macro covered
identifier (e.gputc, printf).

When an entry is#undef ’d as well as changing the reserved identifier’s namespace, the
error associated with the entry may be changed. The change is specified in the#errors
section of ident checking file.#undef[undef]

7.3.2 Programming style example

The identifier checking can also be used to check against certain company standards. The
following example illustrates how to add new identifier checks:

*
* Bloggs Company internal identifier standards file
* First created 3 March 1992
*
* First define some error numbers
#define err_name_too_short 8000
#define err_not_meaningful 8001

* Now come the reserved names
#reserved

* pattern error message scope/linkage modifiers
*
* Complain about one, two or three letter identifiers
*
. err_name_too_short any
.. err_name_too_short any
... err_name_too_short any

* Complain about some silly variable names as well
* ’Temp’ & case variations
[tT][eE][mM][pP] err_not_meaningful any
* ’buff’
[bB][uU][fF][fF] err_not_meaningful any

#exception
* Allow a sensible exception to the three letter rule
end field
*

The associated error file:

*
* Error file for the bloggs internal name convention
*
#define expundef 5

8000 expundef The name ‘%s’ is too short\\

© 1996-97 Knowledge Software Ltd Page 105

Bloggs standards Sec2.1.3.4.5.6a Variable names.
8001 expundef ’%s’ is an unhelpful variable name
Bloggs standards Sec4.5.12.3 Hangable offenses.
*

7.4 Feature test macros

There are many different POSIX standards. POSIX.1 is the base standard. The other
standards (most still in draft form) specify extensions to this base. POSIX.4, defines
standard extensions which are designed to support ‘real time’ operation. For many appli-
cations, however, the base POSIX services will provide all the functionality required to
write an application; other non-POSIX standards may however still be used.

Because the extensions are not needed by most applications, a POSIX compliant platform
is under no obligation (except customer pressure) to implement them. Indeed a platform
may support some of the functionality defined in POSIX.4, but not all of it (by not defining
certain feature test macros whole swathes of the standard can be omitted). In order that a
application may have some method of knowing whether these facilities are available, the
standard requires that certain ‘feature test macros’be defined, in the header<unistd.h>,
for each area supported. An application can then check for the existence of this feature test
macro, before using any of the functionality it refers to.

Example: (POSIX.4 Memory sharing)

#ifdef _POSIX_MEMORY_SHARING
/* Create a new shared memory file ... */
file = mkshm(shm_file, SHM_PERSIST, shm_size);
#else
.....
#endif

Here _POSIX_MEMORY_SHARINGis the feature test macro, andmkshm()(and
SHM_PERSIST) are the identifiers which are being protected.

7.5 Identifier usage

7.5.1 Symbolic parameters

Several of the functions defined by POSIX require symbolic parameters (in the form of
pre-defined macros, in system headers) to be passed to them. e.g., the third parameter of
lseek()should be one of the macrosSEEK_SET, SEEK_CUR, orSEEK_END. Historically,
rather than using these macros, the values 0, 1 and 2, respectively, have been used. POSIX,
however, by defining the action oflseek()in terms of these macros leaves the implementa-
tion free to give them any (integer) values. For a program to be fully POSIX conformant
it must use the macro names defined in the headers. Often problems will be caused by using
the numbers traditionally used under Unix, instead of the macros, when porting to a
proprietary, yet POSIX conformant, platform.

© 1996-97 Knowledge Software Ltd Page 106

7.5.2 Assignment to and comparison with

Many system service routines only return a small set of values. Sometimes they do not
even return explicit values, but rather properties, ie a positive value. The assign section of
a database file contains information on the values that may be assigned to, or compared
against when referring to an object or function of a specific name.

7.5.3 Optionally defined macros

Some of the macros that POSIX.1 specifies as being in the header<limits.h> need not
be defined on some systems. So an application that uses these macro names should first
check that they have been defined, ie they are their own feature test macros. Checking for
this can be done using the feature test macro mechanism.

An example of one of the POSIX.1 optional macros in<limits.h> is:

#feature test macro
ARG_MAX
#protect
ARG_MAX ARG_MAX e_should_check_exist macro
#end

OSPCwill then complain ifARG_MAXis used without a#ifdef checking that it exists.

© 1996-97 Knowledge Software Ltd Page 107

© 1996-97 Knowledge Software Ltd Page 108

Chapter 8

Cross unit checker (mcl)

8.1 Introduction

This chapter takes a detailed look at all of themcl options. The standard help text only lists
those options which a user might wish to change with any frequency. A complete list can
be obtained by using the-DETail option.

mcl -DETail

Most of the options considered to be ‘details’ relate to platform specific functionality. Thus
the setting of these options would normally be controlled by the platform profiles.

Traditionally, linking is the process of joining two or more separately compiled source files,
to create an executable program. TheOSPC cross unit checker performs this and other
tasks.

mcl performs three main functions:

1 It carries out type checking of declarations and definitions between translation units.
This is its main checking role within theOSPC.

2 It reorganizes .kic files into a form suitable for execution; the traditional linkers job.

3 It provides a method of joining multiple .kic and .klc files into one file, deleting and
replacing translation units within a .klc file. This job might normally be carried out
by a separate utility, a librarian, on other systems.

8.2 Options

This section lists all of the options available in the cross unit checking portion ofOSPC.

Notation: In this section the minimum abbreviation for each of the options is given by the
portion in capital letters. That is one or more of the lower case letters may be omitted.

ATP Purge Audit Trail from file

SYNOPSIS

© 1992-1997 Knowledge Software Ltd Page 109

Atp±

DESCRIPTION

Although the word purge is used the effect is not to copy any audit trails
from the input files to the output. It also has the effect of not creating an
audit trail for the current cross unit check. The main use for this option is to
slightly reduce the size of the .klc file.

EXAMPLE

mcl prog -ATP+

A tv View Audit Trail

SYNOPSIS

ATV±

DESCRIPTION

Lists the audit trails contained in the input files being checked, together with
the audit trails for the current invocation ofmcl to standard output.

EXAMPLE

mcl prog -ATV+

Body Do we check macro bodies between files

SYNOPSIS

Body±

DESCRIPTION

When switched on and more than one file is being checked this option causes
mcl to check macros for consistency. This checking involves comparing the
bodies, and in the case of function like macros, the parameters, of macros
with the same names. The checking rules used are the same as for multiple
macro definitions within the same translation unit.

© 1992-1997 Knowledge Software Ltd Page 110

The standard doesn’t mandate that these checks need to be done. However,
inconsistencies between macro definitions in different source files can be
the cause of hard to locate problems (also see the-MAcro option).

EXAMPLE

mcl prog -Body-

Buildmce* Build a new executor

SYNOPSIS

BUILDmce±

DESCRIPTION

Switching this option on causes a new executor to be built. When host
compiled units, or system libraries, are being used it is necessary to build a
new executor to run the program. This new executor contains the ‘glue’
necessary to call the routines from interpreted code.

If units are being checked together to form a .klc library, this option should
be switched off. It should only be switched on when a final program is being
produced.

To run the program typemce.<prog> <prog> <arguments>. It may be
necessary to typeunhashto inform the shell about the new program.

EXAMPLE

mcl prog -BUILDmce-

Chklib * Link in the host compiled startup libraries

SYNOPSIS

CHKLIB±

DESCRIPTION

Switching this option on causes the host compiled startup library,
hclib.klc to be linked into the .klc file.

EXAMPLE

© 1992-1997 Knowledge Software Ltd Page 111

mcl prog -CHKLIB+

Config Specify a configuration filename

SYNOPSIS

COnfig <tag>=<filename>

CFG <tag>=<filename>

DESCRIPTION

Several configuration files are used by the tools, containing strings and
default options. The relevant tags are

• datetime
The names of the months and format for outputting the date and time.

• extensions
The extensions used for c, .kic, .klc files etc.

• strings
The strings for all the output produced by the tool.

• options
The default option settings.

• locate
The location of the various special files e.g. libraries.

If the file cannot be opened or is not in the correct format an error message
is displayed and processing stops.

EXAMPLE

mcl prog -COnfig strings=/home/usr/fred/misc/newstrings

Delete Delete the given file from the input file

SYNOPSIS

Delete <filename>

© 1992-1997 Knowledge Software Ltd Page 112

DESCRIPTION

The input file is assumed to have had the named file linked into it at some
time. The named file is deleted from the .klc file. This deletion involves
removing all code and symbol table information associated with that file.
Macro names unique to the named file are not deleted.

The deletion is performed by making a new version of the .klc file (minus
the deleted file), deleting the old file and renaming the new version with the
old name (unless a new output file is given).

EXAMPLE

mcl prog -Delete strutil

Detail Detailed rather than brief help

SYNOPSIS

DETail±

DESCRIPTION

Only the main options are displayed on the normal help display. The other
options are used by the platform profiles, or are only applicable on certain
hosts (e.g. DOS). This option causes these other options to be displayed,
and is equivalent to-helpmod D .

EXAMPLE

mcl -help det

Echo Echo given text to standard output

SYNOPSIS

ECHO <text>

DESCRIPTION

The rest of the line, starting at the first non-whitespace character is echoed
to the screen.-ECHOon its own displays a newline. It may be used to
display helpful information when options are being processed from a via
file.

© 1992-1997 Knowledge Software Ltd Page 113

Note: This option cannot be used on the command line.

EXAMPLE

-ECHO Created on 29 Feb 1988

Err file Specify error file name

SYNOPSIS

ERRfile <filename>

DESCRIPTION

The named file is searched by the error reporting mechanism if any errors
or warnings may have to be given. If more than one error file is specified,
the files are searched in reverse order. Error messages may be changed by
creating a new error file and giving the appropriate-ERRfile option. The
new error file will take precedence over the rest and will cause the new
messages to be reported.

If <filename> does not exist a warning is given and processing continues.
If no error files could be opened, or no entry can be found for a particular
error, only the error number will be reported. Also, since the severity of an
error cannot be determined they are treated as warnings.

EXAMPLE

mcl prog -ERR new.err

Exe* Create an executable

SYNOPSIS

Exe±

DESCRIPTION

An executable differs from a .klc file in that it contains a function called
main and does not contain any uncalled functions (any functions that are not
explicitly called or assigned to a pointer to function). The generated file has
the suffix .kec rather than .klc.

© 1992-1997 Knowledge Software Ltd Page 114

When using this option one of the .kic or .klc files must contain a function
called main. The purpose of this option is to remove unused functions from
the executable. It can also be used in conjunction with the-HIER and-HC
options to produce a hierarchy diagram.

EXAMPLE

mcl prog -Exe+

Fold Fold filenames before comparing

SYNOPSIS

FOLD±

DESCRIPTION

The names of the linked files are stored in the .klc file. Some operating
systems support mixed case alphabetic characters in filenames, while others
do not. This option causes all characters in filenames to be forced to upper
case before searching or comparing to other filenames. This option is only
relevant when using the-DElete or -REplace options.

EXAMPLE

mcl prog -FOLD+

Forgetall Forget all arguments of option given so far

SYNOPSIS

Forgetall <option>

DESCRIPTION

Some options do not have single values, they accumulate a list of values.
This option enables this list to be forgotten. It must be applied to an option
that takes lists of values or a single string. In particular, when applied to the
following options it has the specified effects:

LOGfile Cancel request for logfile.

NOmsg Reinstate any previously suppressed error numbers.

© 1992-1997 Knowledge Software Ltd Page 115

Output Use default output filename.

PAth Cancel previous prefix.

The main use of this option is in overriding any options given in the configure
file.

mcl prog -f hostinclude

Fulltype Perform full cross translation unit checking

SYNOPSIS

FUlltype±

DESCRIPTION

Full type checking across all objects and functions declared and defined in
all files can be a slow process.mcl provides the option of ‘quick’ checking.
Quick checking is performed using a 32 bit checksum, rather than comparing
information in the symbol table.

Switching this option on causes the type checking to be as per the standard.

Note: Quick checking is not always correct. Sometimes compatible types
are flagged as being incompatible and incompatible types are not flagged.

EXAMPLE

mcl prog -FU-

Glue* Combine the new executor with the .klc file

SYNOPSIS

GLue±

DESCRIPTION

This option provides a simple method of making sure the .klc file and
executor match each other. The program can be run by typing the name of
the program which is created.

© 1992-1997 Knowledge Software Ltd Page 116

See the chapter on host-compiled units in the dynamic reference manual for
more details.

EXAMPLE

mcl prog -GLUE+

Graphics Use graphics in the hierarchy report

Some terminals and printers support graphics characters that enable more
readable diagrams to be produced.

The configuration file supports two sets of characters for drawing the
hierarchy diagrams. This option is used to choose which of these sets is
used. By convention the first set in the configuration files are the graphics
characters and the second are the standard ASCII.

EXAMPLE

mcl prog -Graphics+

Hcontrol* Specify the hierarchy control file

SYNOPSIS

HControl <filename>

DESCRIPTION

If the file is not found or does not have the expected layout a message is then
given. A full hierarchy is then produced. This option only has any effect
when the-HIerarchy option is switched on. Full details of the control
file formats are given in chapter 2.

EXAMPLE

mcl prog -HC hier.ctl

Hierarchy Create a hierarchy file

SYNOPSIS

HIerarchy±

© 1992-1997 Knowledge Software Ltd Page 117

DESCRIPTION

Switching this option on causes a file containing a hierarchy diagram to be
generated.

Note: This option can currently only be used in conjunction with linking to
produce an executable (-Exe option).

EXAMPLE

mcl prog -HI+

He Entries in external hash table

SYNOPSIS

HE <number>

DESCRIPTION

This option controls the size of an internalmcl table. Reducing it will save
space at the expense of performance. While increasing it may speed upmcl
at the expense of using more memory. Unless storage space us very tight,
or there are ten thousand plus externals, it is best left alone.

If this number is changes it is recommended that a prime number be used.

EXAMPLE

mcl prog -HE 211

Hm Entries in the macro hash table

SYNOPSIS

HM <number>

DESCRIPTION

This value follows the same idea as the one above except that it refers to
macros.

Decreasing the default value can have a very large effect on performance.
Like -HE this option should only be changed to a prime number.

© 1992-1997 Knowledge Software Ltd Page 118

EXAMPLE

mcl prog -HM 23

Helpmod Set modifiers for displayed help

SYNOPSIS

HELPMod <letter>

DESCRIPTION

The output of each line of the help text is controlled by a set of modifiers.
Each line can be displayed either always or whenever one of the modifiers
associated with it is given by a-helpmod or -DETail option. The
following modifiers are currently used:

D Detailed help (display everything)

H Host compiled options

M Memory manager options (only relevant to MS-DOS Platforms)

EXAMPLE

mcl prog -helpmod HDM -help

Hostinclude* Link the object or library file into a new executor

SYNOPSIS

HOSTinclude <filename>

DESCRIPTION

When using host compiled libraries (or miscellaneous units), this option
allows the name of a library, or object file, to be specified. This library will
then be linked into the new executor.

EXAMPLE

mcl prog -HOSTinclude /usr/lib/xlib.a

© 1992-1997 Knowledge Software Ltd Page 119

Inputpath Specify prefix path for input filenames

SYNOPSIS

INPUTPAth <path>

DESCRIPTION

The parameter to this option is used to change the default path for opening
files. All filenames following this option will be prefixed by the specified
path.

EXAMPLE

mcl prog1 prog2 -INPUTPA osdir

Keeptemp* Keep temporary files

SYNOPSIS

Keeptemp±

DESCRIPTION

While creating a new executor several temporary files are produced. This
option stops these temporary files from being removed so they can then be
examined. This option is thus a useful for debugging on new systems.

Note: the temporary files should be removed as soon as possible to prevent
the temporary partition filling up. (Most systems place them in
/usr/tmp .)

EXAMPLE

mcl prog -Keep+

Lib Link in the standard libraries

SYNOPSIS

Lib±

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 120

It can be tiresome always having to specify the full pathname of the standard
library. This option can be used to cause the .klc file (presumably a linked
form of the standard library) named in the configure file to be always linked
into the users program.

The library shipped withOSPConly provides the functionality required by
the C standard. If anything extra is required the system (host compiled)
libraries must be used instead. For more details on this subject see the
Dynamic Reference Guide.

EXAMPLE

mcl prog -L+

Logfile Create a log file

SYNOPSIS

LOGfile <filename>

DESCRIPTION

The named file is opened and all characters sent to standard output are sent
to it (standard output still receives the characters sent to it).

EXAMPLE

mcl prog -LOG hist.log

Macro Macro checking between files

SYNOPSIS

MAcro±

DESCRIPTION

Switching this option off stops macro definitions from being copied to the
output file. If the option is on and there are multiple definitions of macros
with the same name then only one of the definitions is copied. Also see
-Body option.

EXAMPLE

© 1992-1997 Knowledge Software Ltd Page 121

mcl prog -MA-

Mapfunc* Change the mapping for a function

SYNOPSIS

MAPFunc <func-name>[:<check-prefix>:[<call-prefix>]]

DESCRIPTION

This option allows a call to a host compiled function to be remapped,
allowing interface checking to be added, or the routines to be replaced.
<check-prefix> is prefixed onto the name of the function being mapped
to form the name of a new name. A function with this name is called before
the original function. If the field is omitted then no function will be called
before hand.

If the<call-prefix> is specified then the function, whose name is given
by prefixing the <call-prefix> onto the original function name, is called
instead of the original function. If omitted the original function is called.

See the chapter on hostcompiled units for more details.

EXAMPLE

mcl prog -MAPFunc printf::MCE_

Mapunit* Re-map the functions in a unit

SYNOPSIS

MAPunit <header>[:<new-name>[:<check-prefix>:[<call-prefix>]]]

DESCRIPTION

This has a similar effect to-MAPFunc except it works on a unit, rather than
a function basis.

<new-name> gives the name of an object file containing the interface
checks or replacements for the functions in this unit. The file is linked into
the new executor when it is built. The option also implies a-MAPFunc
option for each of the functions defined in the unit, although a real-MAP-
Func option always takes precedence.

© 1992-1997 Knowledge Software Ltd Page 122

Any unit that does not have a mapunit command associated with it, is
assumed to have no interface checking, and have a file <basename>.o
associated with it.

EXAMPLE

-rem Contents of a re-mapping file.
-MAPUnit stdio:::MCE_
-REM stdio does not have an associated object file, but
-REM direct all calls to functions it contains via functions
-REM with the prefix MCE_.

mcl prog -MAPUnit stdarg
-REM No object file associated with <stdarg.h>
-rem and don’t remap the functions in int.

Mcerts* Set path of the mce run time system

SYNOPSIS

MCErts <path>

DESCRIPTION

Add a directory to the path the linker searches for the executor library.

EXAMPLE

mcl prog -MCErts /home/fred/lib/mce.a

Min Use the least memory possible

SYNOPSIS

Min <number>

DESCRIPTION

On some systems where available memory is very tight it may be necessary
to use this option when checking large numbers of files. Generally it should
be left off unless absolutely necessary sincemcl‘s performance may be
significantly degraded.

EXAMPLE

© 1992-1997 Knowledge Software Ltd Page 123

mcl prog -Min+

Mm Memory the memory manager can use

SYNOPSIS

MM <number>

DESCRIPTION

The available memory does not limitmcl. A memory management package
is used to allow a hard disc to be used as temporary storage. The memory
manager needs to know in advance the maximum amount of real memory
that might be used (to perform its job). The value of this variable is
proportional to maximum memory usage.

mcl uses the memory manager to store the most voluminous data items.
Smaller, infrequently used data items have memory permanently allocated
to them Since the memory manager can swap data out to disc it can run with
very little real memory. However, disc I/O performance is a bottleneck.

If you are linking large files and the disc is very active then increasing the
amount of real memory available to the memory manager may improve
performance. This is only applicable under MS-DOS.

EXAMPLE

mcl prog -MM 40000

Mn Number of nodes for the memory manager

SYNOPSIS

MN <number>

DESCRIPTION

If mcl gives the message ‘Out of node in memory manager’ then use this
option to increase the memory manager disc space. See the-MMoption for
more details.

EXAMPLE

mcl prog -MN max

© 1992-1997 Knowledge Software Ltd Page 124

Nomsg Suppress a specific error number

Rather than editing the error files to reduce the severity of an unwanted error,
this option allows an error number to be disabled for the current invocation
of mcl. The error file can be obtained by looking in the appropriate error
file.

Note: Disabling fatal or internal errors serves no useful purpose. The result
of continuing after such an error is unpredictable.

EXAMPLE

mcl prog -N99 -N 211

Outbuf size of output buffer

SYNOPSIS

OUTBuf <number>

OB <number>

DESCRIPTION

On some systems increasing the size of the output buffer used bymcl will
speed up disc I/O. Generally the best performance will be obtained if the
output buffer is a multiple of the block size used on the disks.

EXAMPLE

mcl prog -OB 10240

Objpath* Path to find object files along

SYNOPSIS

OBJpath <filename>

DESCRIPTION

This path is used bymcl to locate the object files specified in the-HOSTIn-
clude and-MAPUnit options.

© 1992-1997 Knowledge Software Ltd Page 125

EXAMPLE

mcl prog -objpath /lib -objpath/usr/lib

Output Send output to the given file

SYNOPSIS

Output <filename>

DESCRIPTION

The named file is used as the output destination rather than the name derived
from the first input file encountered on the command line.

EXAMPLE

mcl prog -O xyz.klc

Op Specify output path for all output files

SYNOPSIS

OP <path>

OUTPUTPath <path>

DESCRIPTION

This option provides a method of specifying a directory to which the checked
file should be sent.

EXAMPLE

mcl prog -OB 10240

Ospcdir Specify directory containing interface stubs

SYNOPSIS

OSPCdir <directory>

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 126

This option specifies a directory that function interface stubs can be placed
(along with their respective .kic files). This option is used to speed up
producing a new executor. It also has the advantage of hiding all the .kic
files in a different directory to the .kic’s. When this option is usedmcl only
rebuilds the interface stub if the .kic file is older than the ‘.o’stub, or the stub
doesn’t exist.

The normal convention is to place the line:

-OSPCDir OSPC

in both the .mccrc and the .mclrc files. A directory calledOSPCshould also
be created in each of the source directories. The nameOSPCis assumed by
theccc front end.

EXAMPLE

mcl prog -OSPCDir OSPC

Quiet Stop displaying messages on standard output

SYNOPSIS

Quiet±

DESCRIPTION

Switching this option on causes output to standard output to stop. Output
may be resumed by switching this option off.

EXAMPLE

mcl prog -Q+

References Display references to the standard

SYNOPSIS

REFerences±

DESCRIPTION

Most of the warning and error messages given bymcl arise as a result of
wording in the C standard. The priority in wording these messages was ease

© 1992-1997 Knowledge Software Ltd Page 127

of comprehension rather than using strict standards terminology. This
option causes the appropriate standard reference to be given with these
messages.

EXAMPLE

mcl prog -REF+

Remark Treat delimited text as a comment

SYNOPSIS

REMark <text>

DESCRIPTION

The option follows the same rules as the-ECHOoption with the difference
that the string is not displayed. It is treated as a comment.

EXAMPLE

-REM This is a comment

Replace Replace the given file in the linked file

SYNOPSIS

Replace <filename>

DESCRIPTION

This is one of the librarian facilities provided bymcl. The -Replace
option allows individual .kic files within a .klc to be replaced (the other files
still remain).

NOTE: This option cannot be used in conjunction with adding other files
to the .klc (including linking in a library with-LIB or -CHKLIB). The two
operations should be done one after another.

EXAMPLE

mcc mylib.klc -r strutil

© 1992-1997 Knowledge Software Ltd Page 128

Search Search path for .klc files

SYNOPSIS

Search <filename>

DESCRIPTION

Adds the path to the search path in the .klc file (for use by the executor).
This currently has no effect on the executor’s behaviour.

Suppresslvl Suppress messages below given level

SYNOPSIS

SUppresslvl <number>

DESCRIPTION

The error message file associates one or more numeric levels with each error
number it contains. The number given in this option acts as a cutoff.
Messages with levels below this value do not appear in the output.

Thus if the highest level specified for a given message level is 5 and the
cutoff is 6 no messages will ever appear for that error number. If messages
at levels 5, 6 and 7 are available for a given message and the cutoff is level
6 then the level 6 message acts as the minimum level available.

EXAMPLE

mcl prog -SU 4

Tracecfg Trace Configuration being read in

SYNOPSIS

TRACECfg±

TRC±

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 129

Switching this option on causes a trace of the configuration file to be given,
as it is being read in. The configuration file must be in a given format, and
without any feedback, errors in the layout of this file can be difficult to track
down. Information from this trace can be used to locate possible problems
in the layout.

EXAMPLE

mcl prog -TRC+

Userlib Add path to userlib in .klc file

SYNOPSIS

Userlib <filename>

DESCRIPTION

Specify the name of the userlib for the executor to read when dynamically
linking.

Verbose Talkative mcl

SYNOPSIS

Verbose±

DESCRIPTION

Switching this option on casesmcl to display the name of every translation
unit read in from a .kic or .klc file. If this name is a member of a library file
it will be enclosed in()‘s. When on, together with full type checking, this
option causes the full type of an object, or function to be displayed when
incompatible types are found.

EXAMPLE

mcl prog -V-

V ia Take options from the given file

SYNOPSIS

© 1992-1997 Knowledge Software Ltd Page 130

VIA <filename>

DESCRIPTION

Via files are text files, created by the user, that contain frequently used
command lines. Options in a via file are given one per line. A via file may
contain a reference to another via file, provided that it is the last entry in the
via file.

EXAMPLE

mcl prog -VIA lib.lnk

Xcasefold Case fold external names

SYNOPSIS

XCASEFold±

DESCRIPTION

Switching this option on causes external identifiers which only differ in their
case to be flagged. The identifiers will be treated as referring to the same
object and the externals output to the .klc file will all have their case folded.

The standard specifies that the case of external identifiers need not be
considered significant. This option is primarily available to provide back-
wards compatibility with older linkers. The-XCASESIG option, described
below, will generally be more useful.

Xcasesig Number of significant characters in external names

SYNOPSIS

XCASESig <number>

DESCRIPTION

Switching this option on causes a warning to be reported if two identifiers
are the same except for their case, within their significant length. The
identifiers are still treated as separate symbols.

© 1992-1997 Knowledge Software Ltd Page 131

Xnamelength External name significance

This option may be used to specify the number of significant characters in
an external identifier. Awarning will be given if identifiers aren’t significant
after the given number of characters.

The C standard specifies that only the first six characters in an external
identifier need be considered significant.

Xnametrunc External name significance

SYNOPSIS

XNAMETrunc±

DESCRIPTION

This option may be used to specify the number of significant characters in
an external identifier. Identifiers not significant after the given number of
characters will be treated as referring to the same object. As in the-XNAME-
FOLDoption, the use of this option is primarily for backward compatibility

The C standard specifies that only the first six characters in an external
identifier need be considered significant.

The minimum number of characters any component .kic of .klc files have
been truncated to, is stored in the .klc file. On a subsequent link, this is taken
as the maximum number of significant characters for the link. A smaller
value may be given via the-XNAMELength option. Thus when perform-
ing cross unit checks on a file previously truncated to six characters, with
the option-XN 8 , mcl will flag any clashes to within six characters.

EXAMPLE

mcl prog -NT 10

X tr act Set record to delete from an executable

SYNOPSIS

XTRact <letter>

DESCRIPTION

© 1992-1997 Knowledge Software Ltd Page 132

The .kic and .klc files contain a large amount of information (only comments
from the original source are not present). It is possible to reduce the size of
.klc files by deleting unneeded information.

What is needed is open to debate. For instance deleting macros will prevent
any future links checking against them.

See Chapter 10 for a fuller description of these records and the use to which
that are put.

A All record

D TypeDefinitions (local and global)

F Function dictionary

G TaGs (local and global)

J Internal function declarations and definitions.

L L ine numbers

M Macros

O LocalObject definitions

R GlobalReference lists

T Type records

X EXternal record

8.3 The Hierarchy diagram

When linking to form an executable,mcl also provides the option of producing a call graph
(the hierarchy diagram). Full details are given in the-HEIR and-HC option information,
together with the details of the control file format in chapter 2 of this guide.

© 1992-1997 Knowledge Software Ltd Page 133

© 1992-1997 Knowledge Software Ltd Page 134

Chapter 9

The Internet

9.1 Introduction

The list of standards related information available on the Internet continues to grow rapidly.
The information given here can only act as a snapshot of what is available.

9.2 Web pages

The doc directory, on the distribution tape contains various web pages that have been
downloaded. See directory for details.

http://www.knosof.co.uk The Knowledge Software home page.

http://www.knosof.co.uk/posix.html A collection of useful POSIX URL’s.

http://www.xopen.org The X/Open home page.

http://www.iso.ch The ISO home page.

http://www.itl.nist.gov The US National Institute of Standards and
Technology.

http://www.ecma.ch The European Computer Manufacturers As-
sociation home page.

http://www.dkuug.dk/JTC1/SC22/WG14/ ISO C working group home page.

http://www.dkuug.dk/JTC1/SC22/WG15/ ISO POSIX working group home page.

http://www.jcc.com/sql_stnd.html A SQL standards home page by a committee
member.

http://stdsbbs.ieee.org/ The IEEE home page

http://www.maths.warwick.ac.uk/c++ A C++ standards home page

http://www.qucis.queensu.ca/home/dalamb/info.html
The comp.software-eng FAQ.

9.3 Newsgroups

Newsgroups offer a public forum for debate and asking technical questions. Some groups
seem to attract questioners and not answers. The following groups have been found to be
worth keeping an eye on.

comp.databases Mostly people asking simple questions.

© 1996-97 Knowledge Software Ltd Page 135

comp.risks A moderated group, reporting on its readers experiences of
computer rated problems, disasters and inconveniences in
their lives.

comp.doc.techreports A moderated group that is posted to sporadically. A good
source for references to technical papers.

comp.software-eng General discussion on software engineering issues. Usually
contains several interesting posts per week.

comp.software.measurementThis is a new newsgroup that has yet to attract many con-
tributors.

comp.software.testing General discussion on software testing. Usually contains
several interesting posts per week.

9.4 Other sources

There’s an on-line paper on Hungarian notation at:

gopher://wiretap.spies.com:70/11/Library/Techdoc/Language

© 1996-97 Knowledge Software Ltd Page 136

Chapter 10

Summary of .kic and .klc contents

10.1 Introduction

The .kic files are generated as output frommcc and used as input tomcl. The main
difference between a .kic and .klc file is that the latter has been reorganised bymcl. This
reorganisation is necessary to speed up the loading of the users program bymce. Of course
running more than one .kic file throughmcl also allows type checking across translation
units to be performed.

The .kic and .klc files consist of a series of records. The contents of some of these records
are described below.

10.2 Audit trails

When a C file is processed bymcc the date, time and command line options are stored in
the kic file. Similarly when a .kic file or .klc file is processed bymcl the date, time and
command line options are stored. This information is known as an audit trail.

When two or more files are processed bymcl their combined audit trails are written to the
output file in addition to the information on the current link.

This audit information may be displayed using the-ATV (view audit trail) option. The
information may be deleted by using the-ATP (purge audit trail) option.

10.3 Externals

Symbol table information on all the externals visible in the .klc file are kept together. The
external record for each object and function contains a list of files in which they were
declared and the file in which they were defined, if any.

10.4 Header

This contains various pieces of miscellaneous information such as, number of significant
characters, search paths and limits that is specific to each translation unit.

© 1992-1996 Knowledge Software Ltd Page 137

10.4.1 File information

The internal information for each translation unit is grouped together. Klc files containing
more than one file have a list of these file records.

The internal information for a translation unit consists of:

· File information header. Information specific to that translation unit. Includes the
filename, compile time options, time and date.

· Startup information. Various items used by the executor when loading this file.

· Function block header. This header is followed by information for each function
within the file. This includes compiled code, literals, line numbers and symbol table
information.

· Static information, ie global initialisation.

10.4.2 Line numbers

This record contains the line numbers for each line of code in the original source and the
associated offset of the generated code (from the start of the function).

10.4.3 Literal area

This record contains the literals for each function. The literal area has a separate section
reserved for floating point numbers.

10.4.4 Typeinfo

This record contains the type information associated with every object or function used in
the original source file.

© 1992-1996 Knowledge Software Ltd Page 138

Chapter 11

Syntax of the C language

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:
one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

token:
keyword
identifier
constant
string-literal
operator
punctuator

identifier:
non-digit
identifier non-digit
identifier digit

non-digit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
$ (in non-strict C only)

digit: one of
0 1 2 3 4 5 6 7 8 9

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

© 1992-1996 Knowledge Software Ltd Page 139

floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign:
+
-

digit-sequence:
digit
digit-sequence digit

floating-suffix:
f
l
F
L

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
non-zero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

non-zero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

© 1992-1996 Knowledge Software Ltd Page 140

integer-suffix:
unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt

unsigned-suffix:
u
U

long-suffix:
l
L

enumeration-constant:
identifier

character-constant:
‘c-char-sequence’
L ‘c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any character in the source character set except the
single-quote ‘, backslash \, or new-line character
escape-sequence

string-literal:
“s-char-sequenceopt”
L “s-char-sequenceopt”

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any character in the source character set except
The double-quote “, backslash \, or new-line
escape-sequence

operator: one of
[] () . - + - ~ ! / % ^ |
? : = , # sizeof
++ — & *
< > = == != && ||
*= /= %= += -= <= >= &= ^= |=
##

punctuator: one of
[] () { } * , : = ; ... #

preprocessing-file:
groupopt

© 1992-1996 Knowledge Software Ltd Page 141

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-ex new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-ex new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define ident lparen ident-listopt) replace-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within a #include directive)
identifier (no keyword distinction)
pp-number
character-constant
string-literal

© 1992-1996 Knowledge Software Ltd Page 142

operator
punctuator
each non-white-space character that cannot be one of the above

header-name:
h-char-sequence
“q-char-sequence”

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except
the new-line character and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any character in the source character set except
the new-line character and “

new-line:
the new-line character

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

declaration:
declaration-specifiers init-declarator-listopt;

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

storage-class-specifier:
typedef

© 1992-1996 Knowledge Software Ltd Page 143

extern
static
auto
register

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

struct-or-union-specifier:
struct-or-union identifier opt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier
type-qualifier specifier-qualifier-list

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt: constant-expression

enum-specifier:
enum identifieropt { enumeration-list }
enum identifier

enumeration-list:
enumeration
enumeration-list , enumeration

enumeration:
enumeration-constant

© 1992-1996 Knowledge Software Ltd Page 144

enumeration-constant = constant-expression

declarator:
pointeropt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressionopt]
direct-declarator (parameter-type-list)
direct-declarator (identifier-list opt)

pointer:
* type-qualifier-list opt
* type-qualifier-list opt pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , ...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

identifier-list:
identifier
identifier-list , identifier

type-name:
type-specifier-list abstract-declaratoropt

abstract-declarator:
pointer
pointeropt direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropt [constant-expressionopt]
direct-abstract-declaratoropt (parameter-type-listopt)

typedef-name:
identifier

initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

© 1992-1996 Knowledge Software Ltd Page 145

initializer-list:
initializer
initializer-list , initializer

translation-unit:
external-definition
translation-unit external-definition

external-definition:
function-definition
declaration

primary:
identifier
constant
string-literal
(expression)

postfix-ex:
primary-ex
postfix-ex [expression]
postfix-ex (argument-expression-listopt)
postfix-ex . identifier
postfix-ex - identifier
postfix-ex ++
postfix-ex —

argument-expression-list:
assignment-ex
argument-expression-list , assignment-ex

unary-ex:
postfix-ex
++ unary-ex
— unary-ex
unary-operator cast-ex
sizeof unary-ex
sizeof (type-name)

unary-operator: one of
& * + - ~ !

cast-ex:
unary-ex
(type-name) cast-ex

multiplicative-ex:
cast-ex
multiplicative-ex * cast-ex
multiplicative-ex / cast-ex
multiplicative-ex % cast-ex

shift-ex:
additive-ex
shift-ex < additive-ex
shift-ex > additive-ex

© 1992-1996 Knowledge Software Ltd Page 146

relational-ex:
shift-ex
relational-ex shift-ex
relational-ex shift-ex
relational-ex shift-ex
relational-ex = shift-ex

equality-ex:
relational-ex
equality-ex == relational-ex
equality-ex != relational-ex

AND-ex:
equality-ex
AND-ex & equality-ex

exclusive-OR-ex:
AND-ex
exclusive-OR-ex ^ AND-ex

inclusive-OR-ex:
exclusive-OR-ex
inclusive-OR-ex | exclusive-OR-ex

logical-AND-ex:
inclusive-OR-ex
logical-AND-ex && inclusive-OR-ex

logical-OR-ex:
logical-AND-ex
logical-OR-ex || logical-AND-ex

conditional-ex:
logical-OR-ex
logical-OR-ex ? ex : conditional-ex

assignment-ex:
conditional-ex
unary-ex assignment-operator assignment-ex

assignment-operator: one of
= *= /= %= += -= <= >= &= ^= |=

expression:
assignment-ex
expression , assignment-ex

constant-expression:
conditional-expression

statement:
labelled-statement
compound-statement
expression-statement
jump-statement
selection-statement

© 1992-1996 Knowledge Software Ltd Page 147

iteration-statement

labelled-statement:
identifier : statement
case constant-ex : statement
default : statement

compound-statement:
{ declaration-listopt statement-listopt}

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
expressionopt;

jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt;

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt; expressionopt; expressionopt) statement

11.1 Precedence of operators

primary expressions

16
16
16
16
16

literals names
a[i]
f()
.
->

simple tokens
subscripting
function call
direct selection
indirect selection

© 1992-1996 Knowledge Software Ltd Page 148

unary expressions

15
14
14
14
14
14
14
14
14

++ —
++ —
sizeof
(type-name)
~
!
-
&
*

postfix increment/decrement
prefix increment/decrement
size
cast
bitwise not
logical not
arithmetic negation
adress of
contents of

binary operators

13L
12L
11L
10L
9L
8L
7L
6L
5L
4L
3R
2R

1L

* / %
+ -
<< >>
=
= = !=
&
^
||
&&
|
?:
= += -= *= /= %= <<=
>>= &= ^= |=

,

multiplicative
additive
shift
inequality
equality
bitwise and
bitwise xor
bitwise or
logical and
logical or
conditional
assignment

comma

L, indicates left associative operators; R, right associative operators.

© 1992-1996 Knowledge Software Ltd Page 149

Index

!

#errors 105
#include file

filename length 35
80x86 74

A

Abbreviations 72
ABI 69, 71-72
Abstract machine

P-codes 42
Alignment 70

assumption 20
parameters 20
qualified type 20
restrictions 20
size of datatypes 56
unsigned type 20

any . 97
API . 86

.api 21
arguments 3
conformance to 1
database 2, 16
detecting 15
duplicate identifier 88
extension 16
naming 86
option 20
optional 2
reserved names 12
types 9

Arguments
API . 3
casting 4
symbolic 4, 91

Arithmetic shift 21
ASCII 26
#assert 22, 34
Assignment

allowed 107
#assigns 86
Audit trail 137

displaying 110
Purge 109

B

Binding 79
Bit-field 20, 23

ordering 23
signed 24
signedness 24
storage unit 24

BSD 75
Bug

report 3
Byte sex 22 . . .

C

C
error file 6
library 16
URL 135

C++ 16, 34
comment 34
URL 135

c89 . 5
C9X 34
Call

conventions 4
function 7
interface 3
return value 5

cc . 19
ccc 5, 126
CFG

See configuration
CFG option 11
Char 65
Character constant 25
Checkinfo 8
Checking

declaration 12
dynamic 6-7
identifier exceptions 80
runtime interface 122
when to do it 79

Checksum 116
CHK

option 38
Code

layout 28, 44, 62
optimize 49
pointer 20
proving correctness 49
standard 16, 28

Command line
indirection 130
reading 71

© 1997 Knowledge Software Ltd Page 150

Comment 28, 54
Common practice 3
Company

profile 78
Comparison

allowed 107
limited values 86

Compatible
backward with older linkers 131
type 116

Compiled
host 111

Compiler 69, 71
profile 80

Configuration 5, 7
date and time 6
setting up 66
strings 9
tracing 64, 128

Configuration file 5
changing 11
comments 10
default options 7
header ordering 10
layout 10
locating 6, 8-9
specifying 29
strings 9
tracing 11, 63

Conformance 59, 81
100% 69
accredited 82
API . 1
application 81
headers 38
implementation 81
locating requirements 82
non- 56
POSIX 106
statements 80

Constant
macro 81
symbolic 4-5

Constraint
disabling messages 124
suppressing 49

Control
variable 28

Conversion
signed/unsigned 62
specifier 11, 52, 55

Cpu . 71
registers 33
stack 59
target 20 . . .

D

Date 29
Declaration

literal 90
Declare 97
deduce 78
Default

declaration 16
declare 97
options 29
startup options 7
values 7

Define 30, 97
Delete .kic file 112
Detail 12
Directory

INFO 5, 8
INFO/common 9
PROG 14
ROOT/bin 5-6
ROOT/includes 7

dirent 10
Display

translation unit 129
dispmet 46
Distribution

directory 5
Division 47
do . 28
DOS 31, 113, 123
Dynamic 116, 120

linking 129

E

Ebcdic 26
ECMA

URL 135
EEE

URL 135
Email 4
#end 88
enum

literal 90
Environment variable 6, 19, 41

editor 73
Error 88

conditional 28-29
constraint 38
disabling 49
file 32
format 13
language 16
maximum number of 45

Page 151 © 1997 Knowledge Software Ltd

number 91
number association 32
programmer 44
recover 59
representation 12
summary 61
suppression 8, 61, 128
unwanted 124

Error files 12-15
comments 15
default 14
define line 14
error level 15
error number 15
example 12
format 14-15
message lines 15
multiple 13-14
not found 12
order of processing 14, 114
user modification 14

Error message 14-15
change lead in 12
changing 14

Error number
displaying 32, 114
error level 128
finding out 32
listing 5
not found 83, 114
range of values 15
same 27
specifying 95
suppressing 124
system 16
unique 83
user range 16

errorrange 5
Escape sequence 10-11
Exception 88

context 13
host compiled 37
identifiers 104
list 104

Executable 109, 114, 117
Expression

control 90
evaluation order 33
order of evaluation 66

Extensions
C++ 34
C9X 34
disabling 59
enabling 33
gcc 34
java 34

language 16
MSDOS 34, 39, 119
other languages 34
service 8
slashwhite 34
standard 8
struct 10
System V.4 34
vendor 82

External
character significance 67
information 137
linkage 12
lots of 118
name clash 103 . . .

F

FAQ 135
Far . 34
Feature test 89

macro 89
Field 96

names 10
ordering 9, 11
references 10
restricted values 6
struct 10

File suffix
.alg 16
.api 15, 21
.c 44, 61
.h . 39
.i . 50
.kec 114
.klc 109
.log 44, 120
.lst 44
.map 45
.met 46
.mid 47

File type
database 27
ident 13
valid-header 38

Filename
case significance 115
comparing 115
extensions 6, 9
folding 115
length 35
prefix 119

Filenames 34
Flag

status 99
Float

© 1997 Knowledge Software Ltd Page 152

limits 43
representation 43
significant digits 43

Flow
analysis 4

for . 28
Forgetall 8, 115
Forgetting

option values 35
Fortran 34, 79
fprintf 9, 11
Function 97

data storage required 45
implicit declaration 16
unused 114 . . .

G

GCC 34
Generated code 42
GKS 82
grep 92 . . .

H

hclib.klc 111
Header 81, 89, 96

.kic 137
alternative 38
API . 8
checking names of 38
configuration file 10
extensions 9
host 60
host compiled 37
included 3, 97, 104
known 8
location 81
matching 97
nested 37
predefined macros 80
prefix 97
standard 60
suppressing warnings in 37
system 8, 13, 36, 60, 103
types 9
unknown 8
unrecognized 8
valid 38, 97
valid filenames 8

Help
changing 12
Detailed 39, 119
displaying 19
modifiers 12

text 12
Hierarchy 117, 132

configuration file 117
control file 16-17
diagram 12
Graphics 117

Host 16, 70-71
compiled 37
headers 16
library 119
options 16
platform 6
system headers 7

Host compiled
remapping 121

Host compiler
header 39

Huge 34
Hungarian

notation 136

I

i860 72-73
iddb 85

struct files 100
#ident 34
Identifier

api 21
case folding 66, 130
case significance 66, 130
character significance 48
character truncation 131
characters 41
checking 40, 103
checking algorithm 104
database 13, 85
declaration 40
error files, in 15
errors 16
examples of clashes 103
exceptions 13, 88
external significance 67, 130-131
first character 41
future use 82
legal characters 41
macro covering 103, 105
matching 2
multiple standards, in 89
namespace 104
platform specific 52
predefined 51
properties 14
protecting 7
reserved . . 13-14, 27, 40, 80, 88, 96, 103
same 48

Page 153 © 1997 Knowledge Software Ltd

scope 104
significant characters 130
6 characters 131
symbolic 87
truncation 48
unknown status 16
usage 97, 106
using value of 5
wild cards 104

if . 28
literal 90

Implementation
defined 24, 60, 65
details 1
differences 103

Implicit
cast 28

Important
read standards documents 80

Include
checking 38
default path 19
depth 43
file 5, 7, 16
legal characters in filename 34
locating 5
locating standard 19
logging 64
message on 10-11
option 35
pre 51

Included
header 97

Indentifier
unknown status 15

INFO . 5
Information

obtaining 78
Initialization

literal 90
Installation 6

method 6
Integral

representation 42, 62
Interface

specification 2
stubs 126

Internet 135
ISO

646 26, 81
C 12, 89, 103-104
URL 135

J

Java . 34

K

K&R 16, 29, 70
Keyword

truncation 48
kic

private directory 50
kic contents

deleting 112, 131
Replacing 127

Knowledge Software
URL 135 . . .

L

Label 96
Last string entry 12
Librarian 127
Library 5-6, 119

directory 16
displaying name 129
executor 122
files . 6
shipped 120
system 12, 111

Limit
configuration file line width 11
integral types 56
maximum reported errors 45

limits.h 107
Line

splice 34
splicing 10

Linkage 12, 48, 96
Linker

compatibility 130
Lint 28, 44

error numbers 16
Listing 50

op-codes 42
Literal 4, 89

assign 86
Literals

delimiting 3
Local

configuration 71
options 8, 71
resource 9

Locating Information 16 . . .

M

Macro 96
assert 22
command line 30

© 1997 Knowledge Software Ltd Page 154

constant 11
constant implementation 81
copying to .kic 121
cross unit checking 110
error files, in 14
feature test 7, 52, 80, 89, 106-107
hiding function 103
known to compiler 80
literal 90
lots of 118
matching 104
name clash 103
no define 105
not constant 90
portable 81
predefined 7, 80, 106
removing 112
reserved 97, 104
restrictions 81
size 43
symbolic 3, 91
#undef 104

main 114
mcc

specific information 6
mcc option

Align 19
ASsert 22
BIGendian 22
BITLohi 23
BITSigned 24
CHECKId 27
COnfig 30
D . 30
DETail 31
ERRfile 14, 32
ERRNumber 33
EXtensions 33
FNAMEChar 34
FNAMELen 35
Forgetall 36
HDRsuppress 37
HEADers 38
HELPMod 39
IDent 40
IDSTARTChars 41
Include 40
INTErsperse 42
Lint 43
Listing 44
LOGfile 44
MAPfile 45
MAXErrors 45
MAXWarnings 46
NAMelength 47
NAMETrunc 48

Nomsg 48
OPTimize 49
OSPCDir 49
Output 50
PPlist 50
PSId 52
Quiet 53
Range 53
REFerences 54
REMark 54
SHEnd 55
SHStart 55
Size 56
SOurce 56
SQL 57
SQLV 57
SRCProf 58
STACKDescend 59
STandard 59
STDHdr 59
STRUCT 60
SUMmary 60
suppresslvl 14, 61
SUWrap 62
TABwidth 62
TArget 63
TRACE 63
Verify 65
XCasesig 66

mce
interaction 56

mcl
specific information 6

mcl option
ATP 109
ATV 110
body 110
BUILDmce 111
CHKLIB 111
COnfig 111
Delete 112
DETail 113
ECHO 113
ERRfile 114
Exe 114
FOLD 115
Forgetall 115
FUlltype 116
GLUE 116
Graphics 117
HControl 117
HE 118
HELPMod 118
HIerarchy 117
HM 118
HOSTinclude 119

Page 155 © 1997 Knowledge Software Ltd

Keeptemp 120
Lib 120
LOGfile 120
MAcro 121
MAPFunc 121
MAPunit 122
MCErts 122
Min 123
MM 123
MN 124
Nomsg 124
OBJpath 125
OSPCdir 126
OUTBuf 124
Output 125
OUTPUTPath 125
PAth 119
Quiet 126
REFerences 126
REMark 127
replace 127
Search 128
SUppresslvl 128
TRacecfg 128
Userlib 129
Verbose 129
VIA 129
XCASEFold 130
XCASESig 130
XNamelength 130
XNAMETrunc 131
XTRact 131

Member
alignment 20
merging names 60
offset 20

Memory
management 123
tight 123
tracing 64

Metrics 46
MSDOS

graphics characters 12

N

Name
reserved 14

Namespace 12, 96
pseudo 96, 104

Naming
conventions 80

Near 34
Negative value

dividing 47
Newsgroups 135

Nomsg option 8
#not always constant 90 . . .

O

Object 97
same 131
size 45

ODBC 2
offsetof 104
One’s compliment 42
Operating system 69
Operator 4

relational 7
Option

CHECKId 13
Optional 2

API . 7
constructs 3

Optional macros 107
example 107

Options
? . 33
background 70
command line 8
default values 6-7
example file 7
file 19, 77
file format 7-8
internal defaults 9
local 7
local resource file 7-8
See mcc and mcl options
order of processing 71
overriding default 8
precedence 8
tracing 64
values 70

Order
evaluation, of 33

OS
profile 80

Output
buffer size 124
default filename 36
directory 49
error numbers 32
input 64
kic filename 50
preprocessed 50
progress 53
reserved identifiers 47
standard 31, 44
strings 29 . . .

© 1997 Knowledge Software Ltd Page 156

P

#param 91, 93
Parameter

actual alignment 20
alignment 20

Pascal 34
PATH 6, 93

default 119
finding files 8
output 125

Path aliases 5
INFO 5-6
PLATFORM 5
PROFILES 5
PROG 5
ROOT 5

Pathname
flagging 93
header files 81

PLATFORM 5
assumption 70
conditional error 29
headers 8
host 70
profile 69
proprietary 106
specific fields 10
specific identifiers 52
strange 72
unknown 70

Pointer
bounds checking 53
to function 114
range checking 53
size of 54

Positive 5
POSIX 2, 7, 69, 79, 81, 103, 105-106

binary information 76
SVID 82
URL 135

POSIX.1 10, 79, 82, 100, 106-107
macros 104

POSIX.4 6, 106
#pragma 50-51
Preprocessed output 50
printf 10-11, 51
Prior art 106
profadm 5, 72

create 72
list 74
options 72
update 75

Profile
binary form 76
creating 78-79

error file 83
error numbers 14
file contents 76
hierarchy 69
operating on 72
platform 69
standard 79
testing 83
tracing 64, 83

PROFILES 5-6
administration 72
copying 73
creating 72
delete 74
directory structure 76
finding 74
identifier checking 27
rationale 70
restrictions 76

PROG 5
Property

negative 86
positive 86, 107
signifcant value 87

#protect 93-94

R

Regular expression 93, 96, 104
Representation

characters 26
integer 42
sign 62

Reserved 95
identifier 105
matching 88
names 104

Reserved names 12
return

symbolic 7
Return code 19
>> operator 21
RISC 20
ROOT 5

S

Salt
pinch of 82

Scalar
alignment 20
assuming 11
size of 36, 56, 62
type 10

scanf 55

Page 157 © 1997 Knowledge Software Ltd

Scope 12, 97
file 12

Sequence points 65
Services

duplicate 88
optional 7

Set
modifiers 92

Sets 91-92
sh . 55
Shell . 9

interaction 22
scripts 5

Signed
shifting 21
unsigned 62

Signed magnitude 42
Signedness of char 65
Significant characters

cross unit 130
maximum 131
6 . 48

Size of
scalar 56

Source
default 71
error numbers 61
profile 71
tracing 64

SPARC 73
SQL 57

entry 57
extensions 58
full 57
INFORMIX 58
INGRES 58
intermediate 57
levels 57
ORACLE 58
SQL/3 57
SYBASE 58
UNKNOWN 58
URL 135
vendor 58

Stack
direction 59

Standard
accredited 81
alignment 20
base 106
C9X 34
company 5, 105
creating 82
derived 82
fields 10
future revisions 12

identifiers 76
industry 82
libraries 111, 120
output 110
references 15, 54, 83, 127
reserved names 12
terminology 127

Standard output 31, 44
Quiet 53

Statement
literal 90

Status
checking 99
OS 19

#status flags 99
Storage unit 23-24
String 9

common 6, 9
contents 93
literal checking 93
literals 11
matching 93
modifying 9

String files 9-12, 29
changing 11-12
example 10
format 10

struct 86
assigning to member 86
field 9-10
initialisation 11
option 86

Structure files 100-101
example 100-101
format 101

Style
example 105

Sun . 10
Sun4 52
SVID 75

POSIX 82
SVR4 22, 34, 75, 82

extensions 34
switch 28
Symbolic 3

arguments 81, 91
assignment 86
constant 11
links 6, 8
parameters 92, 106
parameters example 91-92
return value 7

System
header 36, 38, 81
return values 107
stack 20

© 1997 Knowledge Software Ltd Page 158

System headers
reserved identifiers 40 . . .

T

Tab character 62
Tag 96, 104
Target

default 71
porting to 70
profile 71
type 62

Template file 6
Test suite 82
Time 29
time.h 6
Tool

renaming 9
specific information 9

Tracing
configuration 11

Two’s compliment 42
Type

argument 5
arithmetic 4
checking 116
cross unit checking 109, 116
scalar 11
size of 56
tracing during checking 129

Typedef 60, 80, 97, 100 . . .

U

#undef 13, 88, 96, 104
Undefined behaviour 62, 65
unhash 111
union 86

Unix command
shell 55-56
which 9

Unknown
order of evaluation 33
platform 63
profile 57

V

Valid header
files 89

Validation
certificate 82
information 78

Value
property 6
range of 5
restricted range 5
return 6-7

vi . 73

W

Warnings
maximum number of 46

Web . 4
while 28

X

X11 13, 16, 89
conventions 80
headers 8
identifier naming 80

XPG 10, 100, 103
POSIX.1 10

Page 159 © 1997 Knowledge Software Ltd

